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Abstract� McEliece is one of the oldest known public key cryptosys�
tems� Though it was less widely studied than RSA� it is remarkable that
all known attacks are still exponential� It is widely believed that code�
based cryptosystems like McEliece do not allow practical digital signa�
tures� In the present paper we disprove this belief and show a way to
build a practical signature scheme based on coding theory� It�s security
can be reduced in the random oracle model to the well�known syndrome

decoding problem and the distinguishability of permuted binary Goppa
codes from a random code� For example we propose a scheme with sig�
natures of ���bits and a binary security workfactor of ����

Key Words� digital signature� McEliece cryptosystem� Niederreiter cryptosys�
tem� Goppa codes� syndrome decoding� short signatures�

� Introduction

The RSA and the McEliece ���� public key cryptosystems� have been proposed
back in the ��s� They are based on intractability of respectively factorization
and syndrome decoding problem and both have successfully resisted more than
	� years of cryptanalysis e
ort�

RSA became the most widely used public key cryptosystem and McEliece
was not quite as successful� Partly because it has a large public key� which is
less a problem today� with huge memory capacities available at very low prices�
However the main handicap was the belief that McEliece could not be used in
signature� In the present paper we show that it is indeed possible to construct
a signature scheme based on Niederreiter�s variant ��	� on the McEliece cryp�
tosystem�

The cracking problem of RSA is the problem of extracting e�th roots modulo
N called the RSA problem� All the general purpose attacks for it are structural



attacks that factor the modulus N � It is a hard problem but sub�exponential�
The cracking problem for McEliece is the problem of decoding an error correcting
code called Syndrome Decoding �SD� There is no e�cient structural attacks
that might distinguish between a permuted Goppa code used by McEliece and
a random code� The problem SD is known to be NP�hard since the seminal
paper of Berlekamp� McEliece and van Tilborg ���� in which authors show that
complete decoding of a random code is NP�hard�

All among several known attacks for SD are fully exponential �though faster
than the exhaustive search ���� and nobody has ever proposed an algorithm that
behaves di
erently for complete decoding and the bounded decoding problems
within a �slightly smaller distance accessible to the owner of the trapdoor� In
��� Kobara and Imai review the overall security of McEliece and claim that

�� � � � without any decryption oracles and any partial knowledge on the
corresponding plaintext of the challenge ciphertext� no polynomial�time
algorithm is known for inverting the McEliece PKC whose parameters
are carefully chosen�

Thus it would be very interesting to dispose of signature schemes based on
such hard decoding problems� The only solution available up to date was to use
zero�knowledge schemes based on codes such as the SD scheme by Stern ����� It
gives excellent security but the signatures are very long� All tentatives to build
practical schemes failed� see for example �	���

Any trapdoor function allows digital signatures by using the unique capacity
of the owner of the public key to invert the function� However it can only be used
to sign messages the hash value of which lies in the ciphertext space� Therefore
a signature scheme based on trapdoor codes must achieve complete decoding�
In the present paper we show how to achieve complete decoding of Goppa codes
for some parameter choices�

The paper is organized as follows� First we explain in x	 and x� how and
for which parameters to achieve complete decoding of Goppa codes� In x� we
present a practical and secure signature scheme we derive from this technique�
Implementation issues are discussed in x�� and in particular� we present several
tradeo
s to achieve either extremely short signatures ��� bits or extremely fast
veri�cation� In x� we present an asymptotic analysis of all the parameters of
the system� proving that it will remain practical and secure with the evolution
of computers� Finally in x� we prove that the security of the system relies on
the syndrome decoding problem and the distinguishability of Goppa codes from
random codes�

� Signature with McEliece

The McEliece cryptographic scheme is based on error correcting codes� It consists
in randomly adding errors to a codeword �as it would happen in a noisy channel
and uses this as a cipher� The decryption is done exactly as it would be done
to correct natural transmission errors� The security of this scheme simply relies

	



on the di�culty of decoding a word without any knowledge of the structure of
the code� Only the legal user can decode easily using the trap� The Niederreiter
variant � equivalent on a security point of view ��� � uses a syndrome �see below
as ciphertext� and the message is an error pattern instead of a codeword �see
Table ��

��� A brief description of McEliece�s and Niederreiter�s schemes

Let F� be the �eld with two elements f�� �g� In the present paper� C will sys�
tematically denote a binary linear code of length n and dimension k� that is
a subspace of dimension k of the vector space Fn

� � Elements of Fn
� are called

words� and elements of C are codewords� A code is usually given in the form
of a generating matrix G� lines of which form a basis of the code� The parity
check matrix H is a dual form of this generating matrix� it is the n � �n � k
matrix of the application of kernel C� When you multiply a word �a codeword
with an error for example by the parity check matrix you obtain what is called
a syndrome� it has a length of n� k bits and is characteristic of the error added
to the codeword� It is the sum of the columns of H corresponding to the non�
zero coordinates of the error pattern� Having a zero syndrome characterizes the
codeword and we have G�H � ��

Let C be a binary linear code of length n and dimension k correcting t errors
�i�e� minimum distance is at least 	t � �� Let G and H denote respectively a
generator and a parity check matrix of C� Table � brie�y describes the two main
encryption schemes based on code� In both case the trap is a t�error correct�

McEliece Niederreiter

public key� G H
cleartext� x � Fk

� x � Fn
� � wH
x� � t

ciphertext� y � xG� e� wH
e� � t y � HxT

ciphertext space� Fn
� Fn�k

�

Table �� McEliece and Niederreiter code�based cryptosystems

ing procedure for C� It enables decryption �i�e� �nding the closest codeword
to a given word or equivalently the word of smallest Hamming weight with a
prescribed syndrome�

The secret key is a code C� �usually a Goppa code whose algebraic structure
provides a fast decoder� The public code is obtained by randomly permuting the
coordinates of C� and then choosing a random generator or parity check matrix�

G � UG�P or H � V H�P

where G� and H� are a generator and a parity check matrix of C�� U and V are
non�singular matrices �k� k and �n� k� �n� k respectively and P is a n�n
permutation matrix�
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The security of these two systems is proven to be equivalent ��� and is based
on two assumptions�

� solving an instance of the decoding problem is di�cult�
� recovering the underlying structure of the code is di�cult�

The �rst assumption is enforced by complexity theory results ��� 	� ���� and by
extensive research on general purpose decoders ��� ��� ��� The second assumption
received less attention� Still the Goppa codes used in McEliece are known by
coding theorists for thirty years and so far no polynomially computable property
is known to distinguish a permuted Goppa code from a random linear code�

��� How to make a signature

In order to obtain an e�cient digital signature we need two things� an algorithm
able to compute a signature for any document such that they identify their
author uniquely� and a fast veri�cation algorithm available to everyone�

A public�key encryption function can be used as a signature scheme as follows�

�� hash �with a public hash algorithm the document to be signed�
	� decrypt this hash value as if it were an instance of ciphertext�
�� append the decrypted message to the document as a signature�

Veri�cation just applies the public encryption function to the signature and
veri�es that the result is indeed the hash value of the document� In the case
of Niederreiter or any other cryptosystem based on error correcting codes the
point 	 fails� The reason is that if one considers a random syndrome it usually
corresponds to an error pattern of weight greater than t� In other word� it is
di�cult to generate a random ciphertext unless it is explicitly produced as an
output of the encryption algorithm�

One solution to the problem is to obtain for our code an algorithm to decode
any syndrome� or at least a good proportion of them� It is the object of the next
section�

��� Complete decoding

Complete decoding consists of �nding a nearest codeword to any given word of
the space� In a syndrome language that is being able to �nd an error pattern
corresponding to any given syndrome� This means decoding syndromes corre�
sponding to errors of weight greater than t�

An approach to try to perform complete decoding would be to try to correct
a �xed additional number of errors �say �� To decode a syndrome correspond�
ing to an error of weight t� � one should then add � random columns from the
parity check matrix to the syndrome and try to decode it� If all of the � columns
correspond to some error positions then the new syndrome obtained will cor�
respond to a word of weight t and can be decoded by our trapdoor function�
Else we will just have to try again with � other columns� and so on until we can
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Fig� �� from bounded decoding to complete decoding

decode one syndrome� Like this we can decode any syndrome corresponding to
an error of weight less than or equal to t� �� If � is large enough we should be
able to decode any possible syndrome� However� a large � will lead to a small
probability of success for each choice of � columns� This means that we will have
to adapt the parameters of our code to obtain a � small enough and in the same
time keep a good security for our system�

This can be viewed from an di
erent angle� Adding a random column of the
parity check matrix to a syndrome really looks like choosing another random
syndrome and trying to decode it� Choosing parameters for the code such that
� is small enough simply consists of increasing the density of the decodable
syndromes in the space of all the syndromes� this is increasing the probability
for a random syndrome to be decodable� This method will therefore take a �rst
random syndrome �given by the hash function and try to decode it� then modify
the document and hash it again until a decodable syndrome is obtained�

The object of the next section will be to choose parameters such that the
number of necessary attempts is small enough for this method to work in a
reasonable time�

� Finding the proper parameters

The parameters of the problem are the dimension k of the code� its length n and
the maximum number t of errors the code can correct� These parameters a
ect
all aspects of the signature scheme� its security� the algorithmic complexity for
computing a signature� the length of the signature��� We will start by explor�
ing the reasons why the classical McEliece parameters are not acceptable and
continue with what we wish to obtain�

��� Need for new parameters

With the classical McEliece parameters �n � ��	�� k � �	�� t � �� we have
syndromes of length n� k � ���� This makes a total of 	��� syndromes� Among
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these only those corresponding to words of weight less than �� are decodable�
The number of such syndromes is�

P��
i��

�
����
i

�
� 	���

Therefore there is only a probability of 	���	 of success for each syndrome�
This would mean an average number of decoding attempts of 	��	 which is far
too much� We will hence have to change the values of n� k and t�

��� Choosing Parameters

Binary Goppa codes are sub�eld subcodes of particular alternant codes ����
Ch� �	�� For a given integer m� there are many �about 	tm�t t�error correcting
Goppa codes of dimension n� tm and length n � 	m�

We are looking for parameters which lead to a good probability of success for
each random syndrome� The probability of success will be the ratio between the
number of decodable syndromes Ndec and the total number of syndromes Ntot�
As n is large compared with t we have�

Ndec �
tX

i��

�
n

i

�
�

�
n

t

�
�
nt

t�

and for Goppa codes Ntot � 	n�k � 	mt � nt� Therefore the probability of
success is�

P �
Ndec

Ntot
�

�

t�

This probability doesn�t depend of n and the decoding algorithm has a poly�
nomial complexity in m �� log� n and t� Therefore the signature time won�t
change a lot with n� As the security of the Goppa code used increases rapidly
with n we will then be sure to �nd suitable parameters� both for the signature
time and the security�

��� Secure parameters

A fast bounded decoding algorithm can perform about one million decoding in a
few minutes�� From the previous section� the number of decoding attempt to get
one signature will be around t�� so get a reasonable signature scheme� t should
not be more than ��� However for the codes correcting such a little number of
errors we need to have very long codewords in order to achieve good security�

The Table 	 shows the binary workfactors for the Canteaut�Chabaud attack
��� on the McEliece cryptosystem �see section � for more details on the complexity
of these attacks� We assume that an acceptable security level is of 	�� CPU
operations� corresponding roughly to a binary workfactor of 	�	� Therefore� in
our signature scheme� we need a length of at least 	�� with �� errors or 	�	 with
� errors�

Though it is slightly below or security requirement� the choice �	�	� � is
better as it runs about �� times faster�
� our implementation performs one million decodings in � minutes� but it can still be
improved
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n
��� ��� ��� ��� ��� ��� ���

t � � ����	 ����� ����� ����� ����� ��	�� �����

t �  ����� ��
�
 ��
�� ����	 ����� ����� �����

t � �� ��	�
 ����� ����� ����� ����� �
	�
 �
���

Table �� Cost for decoding

� The signature scheme

With the chosen parameters we have a probability of ���� to decode each syn�
drome� We will therefore have to try to decode about �� random syndromes� To
do so we will simply use a counter i and hash it with the document� the hashed
syndrome obtained will then depend of i� and by changing i we can have as many
as we need� The signature scheme works as follows�

Let h be a hash function returning a binary word of length n� k �the length
of a syndrome� Let D be our document and s � h�D� We denote � � � � s � � � j � i��
the concatenation of s and i and si � h�� � � � s � � � j � i���

The signature algorithm will compute the si for i starting at � and increasing
by � at each try� until one of the syndromes si is decodable� We will note i� the
�rst index for which si is decodable� and we will use this syndrome for the
signature� As explained in section 	�	 the signature will then be the decrypted
message� which is in our case the word z of length n and weight �� such that
HzT � si� � However the signature will also have to include the value of i� for
the veri�cation� The signature will therefore be � � � � z � � � j � i����

Signature length� the length of the signature will mainly depend of the way
used to store z� It is a word of length n � 	�	 so the dumb method would be
to use it directly to sign� However its weight is only � so we should be able to

compress it a little� There are
�
���




�
� 	����� word of weight � so they could be

indexed with a �	� bit counter� Let i� � � � � � i
 denote the positions of the
non�zero bits of z� We de�ne the index Iz of z by�

Iz � � �

�
i�
�

�
�

�
i�
	

�
� � � ��

�
i

�

�

The number of bits used to store i� isn�t reducible� in average it�s length is
log���� � ���� bits� So the signature will be � � � � Iz � � � j � i��� with an average
total length of �	���� ���� � ��� bits�

Note that using McEliece encryption scheme instead of Niederreiter�s would
not be satisfactory here� The signature would have a size larger than k bits �the
size of a plaintext� And it would grow radiply with m if t is small� With the
parameters above� the signature would have a length of ����� bits�

�



Signature algorithm

� hash the document D into s � h�D
� compute si � h�� � � � s � � � j � i�� for i � �� �� 	 � � �
� �nd i� the smallest value of i such that si is decodable
� use our trapdoor function to compute z such that HzT � si�
� compute the index Iz of z in the space of words of weight �
� use � � � � Iz � � � j � i��� as a signature for D

Veri�cation algorithm is much simpler �and faster

� recover z from its index Iz
� compute s� � HzT with the public key H
� compute s� � h�� � � �h�D � � � j � i��� with the public hash function
� compare s� and s�� if they are equal the signature is valid

��� Attacks on the signature length

Having such short signatures enables attacks independent on the strength of the
trapdoor function used� which are inherent to the commonly used method of
computing a signature by inversion of the function� This generic attack runs in
the square root of the exhaustive search� Let F be any trapdoor function with an
output space of cardinality 	r� The well known birthday paradox forgery attack
computes 	r�� hash� values MD�mi for some chosen messages� and picks at ran�
dom 	r�� possible signatures� One of these signatures is expected to correspond
to one of the messages�

With our parameters the syndromes have a length of ��� bits and the com�
plexity of the attack is the complexity of sorting the 	����� � 	�� values which
is 	�� � �	� ��� � 	�� binary operations� This attack is not more threatening
than the decoding attack� and in addition it requires a memory of about 	����	
bits� Note also that the above attack depends on the syndrome length and not
on the signature length� this will remain true later� even in the variants with
shorter signature length�

� Implementation aspects

For any signature scheme there is an easy security preserving tradeo
 between
signature length and veri�cation time� One may remove any h bits from the
signature if one accepts exhaustive veri�cation in 	h for each possible value of
the h missing bits� In the case of syndrome�based signature� one can do much
better� As the signature consists of an error pattern of weight t� one may send

� MD denotes a cryptographic hash function with output of r bits

�



only t � � out of the t errors� The veri�er needs to decode the remaining error
and this is much faster that the exhaustive search� More generally we are going
to show that concealing a few errors �between � and � remains an excellent
compromise as summarized in Table ��

	�� Cost of a veri�cation

Let s denote the hash value of the message and z denote the error pattern of
weight t such that HzT � s� As z is the signature� we can compute y � HzT by
adding the t corresponding columns� The signature is accepted if y is the equal
to s� The total cost of this veri�cation is t column operations��

If u is a word of weight t� � whose support is included in the support of z�
we compute y � s � HuT � which costs t � � column operations� and we check
that y is a column of H � which does not cost more than one column operation
if the matrix H is properly stored in a hash table�

Omitting two errors� Let us assume now that the word u transmitted as
signature has weight t� 	� There exists a word x of weight 	 such that HxT �
y � HuT � We are looking for two columns of H whose sum is equal to y� All we
have to do is to add y to any column of H and look for a match in H � Again if
the columns of H are properly stored� the cost is at most 	n column operations�

This can be improved as the signer can choose which 	 errors are left to
veri�er to correct and omits in priority the positions which will be tested �rst�
this divides the complexity in average by t �i�e� the match will be found in
average after n�t tries�

Omitting more errors� In general� if u has weight t�w� we put y � s�HuT

and we need to compute the sum of y plus any w � � columns of H and check
for a match among the columns of H � Proper implementation will cost at most
�
�

n
w��

�
column operations �yes� it is always �� don�t ask why��

Again� if the signer omits the set of w errors which are tested �rst� the average
cost can be divided by

�
t

w��

�
�

Note that if more than 	 errors are not transmitted� the advantage is not
better than the straightforward time�length tradeo
�

	�� Partitioning the support

Punctured code� Puncturing a code in p positions consist in removing the
corresponding coordinates from the codewords� The resulting code has length
n� p and� in general� the same dimension� k� Without loss of generality we can

� In this section we will count all complexities in terms of column operations� one
column operation is typically one access to a table and one operation like an addition
or a comparison

� the actual dimension is the rank of a matrix derived from a generating matrix by
removing the p columns
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remaining cost �a� of signature
errors veri�cation length

� t  ��� bits
� t  ��� bits
� �n�t ��� �� bits
� �

�
n
�

�
�
�
t
�

�
��� ��� bits

� �
�
n
�

�
�
�
t
�

�
��	 � bits

�a� in column operations 
� � to � CPU clocks��
Table �� Tradeo�s for the �error correcting Goppa code of length ���

assume that the punctured positions come �rst� A parity check matrix H � of C �

can be derived from any parity check matrix H of C by a Gaussian elimination�
for some non�singular �n� k� �n� k matrix U we have

UH �

�
I R
� H �

�
�

where I denotes the p� p identity matrix�
Given a syndrome s we wish to �nd z � Fn

� of weight t such that s � HzT �
We denote s�� and s� respectively the p �rst and the n�p�k last bits of Us and
z� the last n� p bits of z� Let w � t denote the weight of z��

�
s � HzT

wH�z � t
�

�
s� � H �z�T

wH�z
� � wH�Rz

�T � s�� � t

Shorter signatures� We keep the notations of the previous section� We parti�
tion the support of C into n�l sets of size l� Instead of giving the t�w positions�
we give the t � w sets containing these positions� These p � l�t � w positions
are punctured to produce the code C �� To verify the signature s we now have
to correct w errors in C �� i�e� �nd z� of weight w such that s� � Hz�T � The
signature is valid if there exists a word z� such that

wH�z
� � w ��

wH �Rz
�T � s�� � t� w �	

We may �nd several values of z� verifying ��� but only one of them will also
verify �	� If l is large� we have to check equation �	 often� On the other hand�
large values of l produce shorter signatures� The best compromise is l � m or a
few units more�

The cost for computing H � is around tm	m�� column operations �indepen�
dently of l and w� The number of column operations for decoding errors in C �

is the same as in C but columns are smaller�
The signature size will be log�

��
n�l
t�w

�
t�
�
� If more than � errors are not trans�

mitted� the length gain is not advantageous�

��



remaining cost �a� of signature
errors 
w� veri�cation length

� ��� ��� bits
� ��� � bits
� ��� �� bits
� ��	 �� bits

�a� in column operations 
� � to � CPU clocks��
Table �� Tradeo�s for m � ��� t �  and l � m

	�� New short signature schemes

With parameters m � �� and t � �� there are three interesting trade�o
s be�
tween veri�cation time and signature length� All three of them have the same
complexity for computing the signature �in our our implementation the order of
magnitude is one minute and the same security level of about 	�� CPU opera�
tions�

Fast veri�cation 
CFS��� We transmit � out of the � error positions� the veri�

�cation is extremely fast and the average signature length is log�

�
t�
�
n
t��

��
�

����� � ��	 bits�
Short signature 
CFS��� We partition the support in 	�� cells of �� bits and

we transmit � of the � cells� The veri�cation time is relatively long� around

one second and the average signature length is log�

��
n�l
t�w

�
t�
�
� ���� � ��

bits�
Half � half 
CFS��� We transmit the rightmost � error positions �out of ��

The veri�cation algorithm starting with the left positions will be relatively
fast in average� less than one millisecond� The average signature length is

log�

�
t�
�
n
t��

��
� ����� � ��� bits�

In all three cases� to obtain a constant length signature one should be able to
upper bound the number of decoding attempts� This is not possible� however by
adding � bits to the signature the probability of failing to sign a message is less
than 	��	� and with � bits it drops to 	�
��

	�� Related work

It seems that up till now the only signature scheme that allowed such short
signatures was Quartz ���� based on HFE cryptosystem ����� It is enabled by
a speci�c construction that involves several decryptions in order to avoid the
birthday paradox forgery described in ��� that runs in the square root of the
exhaustive search� This method is apparently unique to multivariate quadratic
cryptosystems such as HFE and works only if the best attack on the underlying
trapdoor is well above the square root of the exhaustive search ���� ���� Such is
not the case for the syndrome decoding problems�
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� Asymptotic behavior

In order to measure the scalability of the system� we will examine here how the
complexity for computing a signature and the cost of the best known attack
evolve asymptotically� We consider a family of binary t�error correcting Goppa
codes of length n � 	m� These codes have dimension k � n� tm�

�� Signature cost

We need to make t� decoding attempts� for each of these attempts we need the
following�

�� Compute the syndrome� As we are using Niederreiter�s scheme we already
have the syndrome� we only need to expand it into something usable by the
decoder for alternant codes� the vector needed has a size of 	tm bits and
is obtained from the syndrome by a linear operation� this costs O�t�m�
operations in F��

	� Solve the key equation� In this part� we apply Berlekamp�Massey algorithm
to obtain the locator polynomial ��z� this costs O�t� operations in F�m �

�� Find the roots of the locator polynomial� If the syndrome is decodable� the
polynomial ��z splits in F�m �z� and its roots give the error positions� Actu�
ally we only need to check that the polynomial splits� that is gcd���z� z�

m

�
z � ��z� This requires t�m operations in F�m �

We will assume that one operation in F�m requiresm� operations in F�� the total
number of operations in F� to achieve a signature is thus proportional to t�t

�m��

�� Best attacks complexity

Decoding attacks� The best known �and implemented attack by decoding is
by Canteaut and Chabaud ��� and its asymptotic time complexity is �empirically
around �n� log� n

f�t where f�t � �t� c is an a�ne function with � not much
smaller than � and c is a small constant between � and 	�

Good estimates of the asymptotic behavior of the complexity of the best
known general decoding techniques are given by Barg in �	�� In fact� when the
rate R � k�n of the code tends to �� the time and space complexity becomes
	n���R�����o��� which� for Goppa codes� gives nt�����o���

Structural attack� Very little is know about the distinguishability of Goppa
codes� In practice� the only structural attack ��� consists in enumerating all
Goppa codes and then testing equivalence with the public key� The code equiva�
lence problem is di�cult in theory ���� but easy in practice ����� There are 	tm�t
binary t�error correcting Goppa codes of length n � 	m� because of the properties
of extended Goppa codes ���� Ch� �	� x�� only one out of mn� must be tested
and� �nally� the cost for equivalence testing cannot be lower than n�tm� �a
Gaussian elimination� Putting everything together leads to a structural attack
whose cost is not less than tmnt�� elementary operations�

�	



signature cost t�t�m�

signature length� 
t� ��m� log� t
veri�cation cost� t�m
public key size tm�m

cost of best decoding attack �tm����o����

cost of best structural attack tm�m�t���

�One error position omitted

Table �� Characteristics of the signature scheme based on a 
n � �m� k � n� tm� d �
�t� �� binary Goppa code

�� Intrinsic strengths and limitations

In Table � all complexities are expressed in terms of t and m � log� n and we
may state the following facts�

� the signature cost depends exponentially of t�
� the public�key size depends exponentially of m�
� the security depends exponentially of the product tm�

From this we can draw the conclusion that if the system is safe today it can only
be better tomorrow� as its security will depend exponentially of the signature
size� On the other hand the signature cost and the key size will always remain
high� as we will need to increase t or m or both to maintain a good security level�
However� relatively to the technology� this handicap will never be as important
as it is today and will even decrease rapidly�

� Security arguments

In this section we reduce the security of the proposed scheme in the random
oracle model to two basic assumptions concerning hardness of general purpose
decoding and pseudo�randomness of Goppa codes� We have already measured the
security in terms of the work factor of the best known decoding and structural
attacks� We have seen how the algorithmic complexity of these attacks will evolve
asymptotically� The purpose of the present section is to give a formal proof that
breaking the CFS signature scheme implies a breakthrough in one of two well
identi�ed problems� This reduction gives an important indication on where the
cryptanalytic e
orts should be directed�

One of these problem is decoding� it has been widely studied and a major
improvement is unlikely in the near future� The other problem is connected
to the classi�cation of Goppa codes or linear codes in general� Classi�cation
issues are in the core of coding theory since its emergence in the ���s� So far
nothing signi�cant is known about Goppa codes� more precisely there is no
known property invariant by permutation and computable in polynomial time
which characterizes Goppa codes� Finding such a property or proving that none
exists would be an important breakthrough in coding theory and would also
probably seal the fate� for good or ill� of Goppa code�based cryptosystems�
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��� Indistinguishability of permuted Goppa codes

De�nition ����� 
Distinguishers� A T �time distinguisher is a probabilistic
Turing machine running in time T or less such that it takes a given F as an
input and outputs AF equal to � or �� The probability it outputs � on F with
respect to some probability distribution F is denoted as�

Pr�F � F � AF � ��

De�nition ����� 
�T� ��PRC� Let A be a T �time distinguisher� Let rnd�n� k
be the uniform probability distribution of all binary linear �n� k�code� Let F�n� k
be any other probability distribution� We de�ne the distinguisher	s advantage as�

AdvPRCF �A
def
�
			Pr�F � F�n� k � AF � ��� Pr�F � rnd�n� k � AF � ��

			�
We say that F�n� k is a �T� ��PRC 
Pseudo�Random Code� if we have�

max
T�time A

AdvPRCF �A � ��

��� Hardness of decoding

In this section we examine the relationships between signature forging and two
well�known problems� the syndrome decoding problem and the bounded�distance
decoding problem� The �rst is NP�complete and the second is conjectured NP�
hard�

De�nition ����� 
Syndrome Decoding � SD�

Instance� A binary r � n matrix H� a word s of Fr
� � and an integer w 	 ��

Problem� Is there a word x in Fn
� of weight � w such that HxT � s�

This decision problem was proven NP�complete ���� Achieving complete decoding
for any code can be done by a polynomial �in n number of calls to SD� Actually
the instances of SD involved in breaking code�based systems are in a particular
subclass of SD where the weight w is bounded by the half of the minimum
distance of the code of parity check matrix H � Is has been stated by Vardy in
���� as�

De�nition ����� 
Bounded�Distance Decoding � BD�

Instance� An integer d� a binary r�n matrix H such that every d� � columns
of H are linearly independent� a word s of Fr

� � and an integer w � �d���	�
Problem� Is there a word x in Fn

� of weight � w such that HxT � s�

It is probably not NP because the condition on H is NP�hard to check� However
several prominent authors ��� ��� conjecture that BD is NP�hard�
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Relating signature forging and BD� An attacker who wishes to forge for a
message M a signature of weight t with the public key H � has to �nd a word
of weight t whose syndrome lies in the set fh�M� i j i � Ng where h� is a
proper cryptographic hash function �see x�� Under the random oracle model�
the only possibility for the forger is to generate any number of syndromes of
the form h�M� i and to decode one of them this cannot be easier than BD�	t�
�� H� h�M� i� t for some integer i�

Relating signature forging and SD� Let us consider the following problem�

De�nition ����� 
List Bounded�Distance Decoding � LBD�

Instance� An integer d� a binary r�n matrix H such that every d�� columns of
H are linearly independent� a subset S of Fr

� � and an integer w � b�d���	c�
Problem� Is there a word x in Fn

� of weight � w such that HxT � S�

Using this problem we will show how we may relate the forging of a signature
to an instance of SD�

� In practice the forger must at least solve LBD�	t � �� H� S� t where S 	
fh�M� i j i � Ng� The probability for the set S to contain at least one
correctable syndrome is greater than � � e�� where � � jSj

�
n
t

�
�	r� This

probability can be made arbitrarily close to one if the forger can handle a
set S big enough�

� Similarely� from any syndrome s � Fr
� � one can derive a set Rs�� 	 fs�HuT j

u � Fn
� � wH�u � �g where � � dvg � t and dvg is an integer such that�

n
dvg

�
	 	r� With probability close to ��e�� where 
 � jRs��j

�
n
t

�
�	r� we have

LBD�	t��� H�Rs��� t � SD�H� s� dvg� Thus solving LBD�	t��� H�Rs��� t
is at least as hard as solving SD�H� s� dvg�

� We would like to conclude now that forging a signature is at least as hard
as solving SD�H� s� dvg for some s� This would be true if solving LBD�	t�
�� H� S� t was harder than solving LBD�	t� �� H�Rs��� t for some s� which
seems di�cult to state� Nevertheless� with sets S and Rs�� of same size� it
seems possible to believe that the random set �S will not be the easiest to
deal with�

Though the security claims for our signature scheme will rely on the di�culty
of BD�	t � �� H� s� t� it is our belief that it can reduced to the hardness of
SD�H� s� dvg �note that dvg depends only of n and r� not of t� If we assume the
pseudo�randomness of the hash function h� and of Goppa codes these instances
are very generic�

��� Security reduction

We assume that the permuted Goppa code used in our signature scheme is a
�TGoppa� ��	�PRC� i�e� it cannot be distinguished from a random code with an
advantage greater than ��	 for all adversaries running in time � TGoppa�
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We assume that an instance of BD�	t� �� H� s� t where H and s are chosen
randomly cannot be solved with probability greater than ��	 by an adversary
running in time � TBD�

Theorem ����� 
Security of CFS� Under the random oracle assumption� a
T �time algorithm that is able to compute a valid pair messagesignature for CFS
with a probability 
 ��	 satis�es�

T 
 min �TGoppa� TBD �

Proof �sketch�� Forging a signature is at least as hard as solving BD�	t��� H� s� t
where s � h�M� i �see x��	 and H is the public key� Under the random oracle
assumption� the syndrome h�M� i can be considered as random� If someone is
able to forge a signature in time T � TBD� then with probability ��	 the matrix
H has been distinguished from a random one and we have T 
 TGoppa� �

� Conclusion

We demonstrated how to achieve digital signatures with the McEliece public key
cryptosystem� We propose � schemes that have tight security proofs in random
oracle model� They are based on the well known hard syndrome decoding problem
that after some �� years of research is still exponential� The Table � summarizes
the concrete security of our schemes compared to some other known signature
schemes�

base cryptosystem RSA ElGamal EC HFE McEliece�Niederreiter

signature scheme RSA DSA ECDSA Quartz CFS� CFS� CFS�

data size
s� ���� �������� ��� ��� ���

security

structural problem factoring DL
p� Nechaev

group� HFEv� Goppa
�
� PRCode

best structural attack ���� ��	� � � �
� ���


inversion problem RSAP DL
q� EC DL MQ SD

best inversion attack ��	� ��� ��� ��		 ���

e�ciency

signature length ���� ��� ��� ��� ��� �� ��

public key �kbytes� ��� ��� ��� �� ����

signature time � GHz  ms ��� ms � ms �� s ��� �� s

veri�cation time � GHz  ms � ms � ms �� ms � � �s � � ms � �s
Table �� McEliece compared to some known signature schemes

The proposed McEliece�based signature schemes have unique features that
will make it an exclusive choice for some applications while excluding other� On

��



one hand� we have seen that both key size and signing cost will remain high� but
will evolve favorably with technology� On the other hand the signature length
and veri�cation cost will always remain extremely small� Therefore if there is no
major breakthrough in decoding algorithms� it should be easy to keep up with
the Moore�s law�
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