Information Technology Laboratory

U.S Department of Commerce

National Institute
of Standards and Technology

NIST Special Publication 800-20

Modes of Operation Validation System for the Triple Data Encryption Algorithm (TMOVS):
 Requirements and Procedures

Sharon S. Keller

Computer Science

and Technology

NIST Special Publication 800-20
Modes of Operation Validation System for the Triple Data Encryption Algorithm
(TMOVS):

Requirements and Procedures

Sharon Keller

Security Technology Group
Computer Security Division
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930
Original Date: October 1999
Revision Date: April 2000

U.S. DEPARTMENT OF COMMERCE

William M. Daley, Secretary
Technology Administration
Gary R. Bachula, Acting Under Secretary for Technology
National Institute of Standards and Technology
Raymond G. Kammer, Director

Revision History

April 2000

Page

Revision

OVERALL Rename the Modes Tests to the Monte Carlo Tests to coincide with all other documents.

OVERALL Represent "through" as ".." not ".-"
OVERALL Draw a box around the Triple DES operations in the pseudocode to indicate what code is from the Triple DES standard and what code is part of the Validation test.

OVERALL Replace subscript numbers with subscript variable names. For example, C_{9999} is replaced with C_{j}.

6 Make reference to the three different keying options specified in FIPS PUB 46-3.
28 Input Type 2 - remove "...represented as a 16 character ASCII...", replace with "...represented as an ASCII..."

29 Input Type 5 - same as above
30 Input Type 8 - same as above
32 Input Type 13 - same as above
33 Input Type 15 - same as above
34 Input Type 18 - same as above
35 Input Type 21 - same as above
36 Input Type 22 - for TEXT1, TEXT2, and TEXT3 remove "... 1 to 64 binary..." replace with "... 64 binary..."

37 Input Type 24 - same as above

Page

40 Output Type 6 - same as above
41 Output Type 7 - same as above
Output Type 8 - same as above

Replace $\mathrm{P}_{0}=\mathrm{C}_{9999}$ with $\mathrm{P}_{0}=\mathrm{C}_{\mathrm{j}}$
In pseudocode, the subscript should be lowercase i and P_{i}
b. - Replace $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}, \mathrm{P} 3_{\mathrm{i}}$ with $\mathrm{I} 1_{\mathrm{i}}, \mathrm{I} 2_{\mathrm{i}}, \mathrm{I} 3_{\mathrm{i}}$.

Clock Cycle T4, a) - replace DEA_{2} with DEA_{3}

137 In f), g) and h) -
Replace subscript 9999 with j
Replace subscript 9998 with j-1
Replace subscript 9997 with j-2
In the pseudocode, add "FOR $\mathrm{k}=1$ to 3 "
Replace subscript 9999 with j

Revision

In pseudocode, Send statement - the subscript on C should be lowercase i .

Switch 2) and 3) to make the text coincide with the pseudocode
In pseudocode, Send statement $-\mathrm{I} 1_{i}, \mathrm{I} 2_{\mathrm{i}}$, and $\mathrm{I} 3_{\mathrm{i}}$ should be sent instead of $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}$,

Clock Cycle T4, 2) - The subscript on TEMP3 should be 1.

Replace Ck_{9998} with $\mathrm{Ck}_{\mathrm{j}-1}$ and replace Ck_{9999} with Ck_{j}
b) - replace DEA_{3} with DEA_{2} replace $\mathrm{KEY} 3_{\mathrm{i}}$ with $\mathrm{KEY} 2_{i}$

Swap a) and b) to make the text coincide with the pseudocode.

In Clock Cycle T1-b), Clock Cycle T2: b), and Clock Cycle T3: b):
The j in I 1 j , I 2 j , and I 3 j , respectively, should be a subscript: $\mathrm{I} 1_{\mathrm{j}}, \mathrm{I} 2_{\mathrm{j}}, \mathrm{I} \mathrm{I}_{\mathrm{j}}$.

Page

Revision

167 In 2 b) - Add comma after $\mathrm{P} 3_{\mathrm{j}}$.
167 In f. - Add comment "Note j=9999."
In f), g) and h) -
Replace subscript 9999 with j
Replace subscript 9998 with j-1
Replace subscript 9997 with j-2
182 In pseudocode, replace the subscript 9999 with j
In 2) and 3) - Replace the subscript 9999 with j
In 3) - Add subscripts to I and k-bit C so they read I_{j} and C_{j}
185-186 In pseudocode, replace the subscript 9999 with j .
187 In 2) and 3) - Replace the subscript 9999 with j .
In 2) - Add subscripts to I and k-bit C so they read I_{j} and C_{j}
210 In pseudocode, the code pertaining to the Triple DES algorithm does not coincide with the Triple DES standard. The subscript on RESULT should be j-3, i.e.,

$$
\mathrm{Ij}=\mathrm{RM}^{(64-\mathrm{K})}(\mathrm{I}(\mathrm{j}-1)) \| \text { K-bit } \text { RESULT }_{\mathrm{j}-2}
$$

Should be

$$
\mathrm{Ij}=\mathrm{RM}^{(64-\mathrm{K})}(\mathrm{I}(\mathrm{j}-1)) \| \mathrm{K}-\text { bit } \operatorname{RESULT}_{\mathrm{j}-3}
$$

210 Add a separate Monte Carlo Test for the Encryption and Decryption processes of the CFB-P Mode of operation. (Section 5.5.2)

211 In pseudocode, replace 19999 with Ij .
212 In b2), replace subscript j-2 with j-3.
213 In 3) and 4) - Replace the subscript 9999 with j . Add statement "... where $\mathrm{j}=$ 9999."

226 At the end of the external loop, where new values are generated for the keys, the text and the input block, it was unclear in the generation of the new text which
value of text was being referred to in this statement:

$$
\mathrm{TEXT}_{0}=\mathrm{TEXT}_{0} \oplus \mathrm{I}_{\mathrm{j}}
$$

TEXT_{0} is referring to the initial text of the INTERNAL loop. Therefore, add the following code to make this clear:

In pseudocode, add statement "INITTEXT $=$ TEXT $_{0}$ " in the external loop before the internal loop. This will capture the initial text used for each internal loop.

Also, modify the statement at the end of the external loop:
$\mathrm{TEXT}_{0}=\mathrm{TEXT}_{0} \oplus \mathrm{I}_{\mathrm{j}}$
To read
$\mathrm{TEXT}_{0}=\operatorname{INITTEXT} \oplus \mathrm{I}_{\mathrm{j}}$

227 In the pseudocode, replace the subscript 9999 with j .

In the pseudocode, Replace the subscript 9999 with j .
253-254 Replace subscript 9999 with j.

Page

Revision

Table A. 5 Replace column headings PLAINTEXT1, 2, and 3 with INPUTBLOCK1, 2, and 3.
Table A. 7 Replace column headings PLAINTEXT1, 2, and 3 with one column labeled CIPHERTEXTS.

Replace column headings CIPHERTEXT1, 2, and 3 with PLAINTEXT 1, 2, and 3.
Table A. 8 Start ROUND numbers with 0.
Table A. 8 Replace colum headings PLAINTEXT1, 2, and 3 with one column labeled PLAINTEXTS.

Table A. 9 Replace column headings PLAINTEXT1, 2, and 3 with PLAINTEXT1 \oplus IV1, PLAINTEXT2 \oplus IV2, and PLAINTEXT3 \oplus IV3, respectively.

Table A. 10 Replace column headings PLAINTEXT1, 2, and 3 with IV1, 2, and 3.

TABLE OF CONTENTS

1. INTRODUCTION 1
1.1 BACKGROUND 1
1.2 Organization 2
1.3 Definition(s). 3
1.4 Symbols (AND Acronyms) 4
2. TRIPLE DATA ENCRYPTION ALGORITHM (TDEA) 6
2.1 TDEA Electronic Codebook (TECB) Mode 7
2.2 TDEA Cipher Block Chaining (TCBC) Mode 8
2.3 TDEA Cipher Block Chaining - Interleaved (TCBC-I) Mode 9
2.4 TDEA Cipher Feedback (TCFB) Mode 11
2.5 TDEA Cipher Feedback Mode of Operation - Pipelined (TCFB-P) 12
2.6 TDEA Output Feedback (TOFB) Mode 13
2.7 TDEA Output Feedback Mode of Operation - Interleaved (TOFB-I) 14
3. MODES OF OPERATION VALIDATION SYSTEM FOR THE TRIPLE DES (TDES) ALGORITHM
MODES OF OPERATION VALIDATION SYSTEM FOR THE TRIPLE DES (IDES) ALGORIT 15
3.1 The Known Answer Tests 15
3.1.1 The Encryption Process 15
3.1.1.1 The Variable Plaintext Known Answer Test 16
3.1.1.2 The Inverse Permutation Known Answer Test 16
3.1.1.3 The Variable Key Known Answer Test for the Encryption Process 17
3.1.1.4 The Permutation Operation Known Answer Test for the Encryption Process 18
3.1.1.5 The Substitution Table Known Answer Test for the Encryption Process 19
3.1.2 The Decryption Process 20
3.1.2.1 The Variable Ciphertext Known Answer Test 20
3.1.2.2 The Initial Permutation Known Answer Test 21
3.1.2.3 The Variable Key Known Answer Test for the Decryption Process 22
3.1.2.4 The Permutation Operation Known Answer Test for the Decryption Process... 23
3.1.2.5 The Substitution Table Known Answer Test for the Decryption Process 23
3.2 The Monte Carlo Test 24
4. BASIC PROTOCOL 26
4.1 Overview 26
4.1.1 Conventions 26
4.1.2 Message Data Types 26
4.2 Message Contents 27
4.3 InPut Types 27
4.3.1 Input Type 1 28
4.3.2 Input Type 2 28
4.3.3 Input Type 3 28
4.3.4 Input Type 4 29
4.3.5 Input Type 5 29
4.3.6 Input Type 6. 29
4.3.7 Input Type 7. 29
4.3.8 Input Type 8. 30
4.3.9 Input Type 9. 30
4.3.10 Input Type 10 30
4.3.11 Input Type 11 31
4.3.12 Input Type 12 31
4.3.13 Input Type 13 32
4.3.14 Input Type 14 32
4.3.15 Input Type 15 32
4.3.16 Input Type 16 33
4.3.17 Input Type 17 33
4.3.18 Input Type 18 34
4.3.19 Input Type 19 34
4.3.20 Input Type 20 35
4.3.21 Input Type 21 35
4.3.22 Input Type 22 35
4.3.23 Input Type 23 36
4.3.24 Input Type 24 36
4.3.25 Input Type 25 37
4.4 Output Types 37
4.4.1 Output Type 1 38
4.4.2 Output Type 2 38
4.4.3 Output Type 3 38
4.4.4 Output Type 4 39
4.4.5 Output Type 5 40
4.4.6 Output Type 6 40
4.4.7 Output Type 7 41
4.4.8 Output Type 8 41
5. TESTS REQUIRED TO VALIDATE AN IMPLEMENTATION OF THE TRIPLE DES ALGORITHM43
5.1 TDEA Electronic Codebook (TECB) Mode 45
5.1.1 Encryption Process 45
5.1.1.1 The Variable Plaintext Known Answer Test - TECB Mode 46
5.1.1.2 The Inverse Permutation Known Answer Test - TECB Mode 48
5.1.1.3 The Variable Key Known Answer Test for the Encryption Process - TECB Mode 50
5.1.1.4 Permutation Operation Known Answer Test for the Encryption Process - TECB Mode 52
5.1.1.5 Substitution Table Known Answer Test for the Encryption Process - TECB Mode 54
5.1.1.6 Monte Carlo Test for the Encryption Process - TECB Mode 56
5.1.2 Decryption Process 59
5.1.2.1 The Variable Ciphertext Known Answer Test - TECB Mode 60
5.1.2.2 The Initial Permutation Known Answer Test - TECB Mode. 63
5.1.2.3 The Variable Key Known Answer Test for the Decryption Process - TECB Mode. 65
5.1.2.4 Permutation Operation Known Answer Test for Decryption Process - TECB Mode 68
5.1.2.5 Substitution Table Known Answer Test for the Decryption Process - TECB Mode 71
5.1.2.6 Monte Carlo Test for the Decryption Process - TECB Mode 74
5.2 Cipher Block Chaining (TCBC) Mode 77
5.2.1 Encryption Process 77
5.2.1.1 The Variable Plaintext Known Answer Test - TCBC Mode 78
5.2.1.2 The Inverse Permutation Known Answer - TCBC Mode 80
5.2.1.3 The Variable Key Known Answer Test for the Encryption Process - TCBC Mode. 82
5.2.1.4 Permutation Operation Known Answer Test for the Encryption Process - TCBC Mode 85
5.2.1.5 Substitution Table Known Answer Test for the Encryption Process - TCBC Mode 87
5.2.1.6 Monte Carlo Test for the Encryption Process - TCBC Mode 89
5.2.2 Decryption Process 93
5.2.2.1 The Variable Ciphertext Known Answer Test - TCBC Mode 94
5.2.2.2 The Initial Permutation Known Answer Test - TCBC Mode 97
5.2.2.3 The Variable Key Known Answer Test for the Decryption Process - TCBC Mode 99
5.2.2.4 Permutation Operation Known Answer Test for Decryption Process - TCBC Mode 102
5.2.2.5 Substitution Table Known Answer Test for the Decryption Process - TCBC Mode 105
5.2.2.6 Monte Carlo Test for the Decryption Process - TCBC Mode 108
5.3 Cipher Block Chaining Mode - Interleaved (TCBC-I) 112
5.3.1 Encryption Process 112
5.3.1.1 The Variable Plaintext Known Answer Test - TCBC-I Mode 113
5.3.1.2 The Inverse Permutation Known Answer Test - TCBC-I Mode 117
5.3.1.3 The Variable Key Known Answer Test for the Encryption Process - TCBC-I Mode 121
5.3.1.4 Permutation Operation Known Answer Test for the Encryption Process - TCBC-I Mode 125
5.3.1.5 Substitution Table Known Answer Test for the Encryption Process - TCBC-I Mode 129
5.3.1.6 Monte Carlo Test for the Encryption Process - TCBC-I Mode 133
5.3.2 Decryption Process 138
5.3.2.1 The Variable Ciphertext Known Answer Test - TCBC-I Mode 139
5.3.2.2 The Initial Permutation Known Answer - TCBC-I Mode 143
5.3.2.3 The Variable Key Known Answer Test for the Decryption Process - TCBC-I Mode 147
5.3.2.4 Permutation Operation Known Answer Test for the Decryption Process - TCBC-I Mode. 152
5.3.2.5 Substitution Table Known Answer Test for the Decryption Process - TCBC-I Mode 157
5.3.2.6 Monte Carlo Test for the Decryption Process - TCBC-I Mode 162
5.4 The Cipher Feedback (TCFB) Mode 168
5.4.1 The Known Answer Tests - TCFB Mode 168
5.4.1.1 The Variable TEXT Known Answer Test - TCFB Mode 169
5.4.1.2 The Inverse Permutation Known Answer Test - TCFB Mode 171
5.4.1.3 The Variable KEY Known Answer Test - TCFB Mode. 173
5.4.1.4 The Permutation Operation Known Answer Test - TCFB Mode 176
5.4.1.5 The Substitution Table Known Answer Test - TCFB Mode 178
5.4.2 The Monte Carlo Tests - TCFB Mode 180
5.4.2.1 The Monte Carlo Test for the Encryption Process - TCFB Mode. 180
5.4.2.2 The Monte Carlo Test for the Decryption Process - TCFB Mode. 184
5.5 The Cipher Feedback (CFB-P) Mode 188
5.5.1 The Known Answer Tests - TCFB-P Mode 188
5.5.1.1 The Variable TEXT Known Answer Test - TCFB-P Mode 189
5.5.1.2 The Inverse Permutation Known Answer Test - TCFB-P Mode. 193
5.5.1.3 The Variable KEY Known Answer Test - TCFB-P Mode 197
5.5.1.4 The Permutation Operation Known Answer Test - TCFB-P Mode 201
5.5.1.5 The Substitution Table Known Answer Test - TCFB-P Mode 205
5.5.2 The Monte Carlo Tests - TCFB-P Mode 209
5.5.2.1 The Monte Carlo Test for the Encryption Process - K-bit TCFB-P Mode 209
5.5.2.2 The Monte Carlo Test for the Decryption Process - K-bit TCFB-P Mode. 212
5.6 The Output Feedback Mode - TOFB Mode 217
5.6.1 The Known Answer Tests - TOFB Mode 218
5.6.1.1 The Variable TEXT Known Answer Test - TOFB Mode 218
5.6.1.2 The Inverse Permutation Known Answer Test - TOFB Mode. 220
5.6.1.3 The Variable KEY Known Answer Test - TOFB Mode 222
5.6.1.4 The Permutation Operation Known Answer Test - TOFB Mode 225
5.6.1.5 The Substitution Table Known Answer Test - TOFB Mode 227
5.6.2 The Monte Carlo Test - TOFB Mode 229
5.7 The Output Feedback Interleaved (OFB-I) Mode 233
5.7.1 The Known Answer Tests - TOFB-I Mode 233
5.7.1.1 The Variable TEXT Known Answer Test - TOFB-I Mode 234
5.7.1.2 The Inverse Permutation Known Answer Test - TOFB-I Mode 238
5.7.1.3 The Variable KEY Known Answer Test - TOFB-I Mode 242
5.7.1.4 The Permutation Operation Known Answer Test - TOFB-I Mode 246
5.7.1.5 The Substitution Table Known Answer Test - TOFB-I Mode. 250
5.7.2 The Monte Carlo Tests - TOFB-I Mode 254
6. DESIGN OF THE TRIPLE DES MODES OF OPERATION VALIDATION SYSTEM (TMOVS) 258
6.1 DESIGN PHILOSOPHY 258
6.2 Operation of the TMOVS 258
APPENDIX A TABLES OF VALUES FOR THE KNOWN ANSWER TESTS 259
REFERENCES 299

FIGURES

Figure 1 TDEA Electronic Codebook (TECB) Mode 8
Figure 2 TDEA Cipher Block Chaining (TCBC) Mode 8
Figure 3 TDEA Cipher Feedback (TCFB) Mode 11
Figure 4 TDEA Output Feedback (TOFB) Mode 13

TABLES

Table 1 The Variable Plaintext Known Answer Test - TECB Mode 46
Table 2 The Inverse Permutation Known Answer Test - TECB Mode 48
Table 3 The Variable Key Known Answer Test for the Encryption Process - TECB Mode 50
Table 4 The Permutation Operation Known Answer Test for the Encryption Process - TECB Mode 52
Table 5 The Substitution Table Known Answer Test for the Encryption Process - TECB Mode 54
Table 6 The Monte Carlo Test for the Encryption Process - TECB Mode 56
Table 7 The Variable Ciphertext Known Answer Tests - TECB Mode. 60
Table 8 Initial Permutation Known Answer Test - TECB Mode. 63
Table 9 The Variable Key Known Answer Tests for the Decryption Process - TECB Mode 65
Table 10 The Permutation Operation Known Answer Test for the Decryption Process - TECB Mode. 68
Table 11 The Substitution Table Known Answer Test for the Decryption Process - TECB Mode 71
Table 12 The Monte Carlo Test for the Decryption Process - TECB Mode. 74
Table 13 The Variable Plaintext Known Answer Test - TCBC Mode 78
Table 14 The Inverse Permutation Known Answer Test - TCBC Mode 80
Table 15 The Variable Key Known Answer Test for the Encryption Process - TCBC Mode 82
Table 16 The Permutation Operation Known Answer Test for the Encryption Process - TCBC Mode 85
Table 17 The Substitution Table Known Answer Test for the Encryption Process - TCBC Mode 87
Table 18 The Monte Carlo Test for the Encryption Process - TCBC Mode. 89
Table 19 The Variable Ciphertext Known Answer Test - TCBC Mode 94
Table 20 The Initial Permutation Known Answer Test - TCBC Mode. 97
Table 21 The Variable Key Known Answer Test for the Decryption Process - TCBC Mode 99
Table 22 The Permutation Operation Known Answer Test for the Decryption Process - TCBC Mode 102
Table 23 The Substitution Table Known Answer Test for the Decryption Process - TCBC Mode. 105
Table 24 The Monte Carlo Test for the Decryption Process - TCBC Mode 108
Table 25 The Variable Plaintext Known Answer Test - TCBC-I Mode 113
Table 26 The Inverse Permutation Known Answer Test - TCBC-I Mode. 117
Table 27 The Variable Key Known Answer Test for the Encryption Process - TCBC-I Mode. 121
Table 28 The Permutation Operation Known Answer Test for the Encryption Process - TCBC-I Mode. 125
Table 29 The Substitution Table Known Answer Test for the Encryption Process - TCBC-I Mode 129
Table 30 The Monte Carlo Test for the Encryption Process - TCBC-I Mode 133
Table 31 The Variable Ciphertext Known Answer Test - TCBC-I Mode 139
Table 32 The Initial Permutation Known Answer Test - TCBC-I Mode 143
Table 33 The Variable Key Known Answer Test for the Decryption Process - TCBC-I Mode 1 147
Table 34 The Permutation Operation Known Answer Test for the Decryption Process - TCBC-I Mode. 152
Table 35 The Substitution Table Known Answer Test for the Decryption Process - TCBC-I Mode 157
Table 36 The Monte Carlo Test for the Decryption Process - TCBC-I Mode 162
Table 37 The Variable TEXT Known Answer Test - TCFB Mode. 169
Table 38 The Inverse Permutation Known Answer Test - TCFB Mode 171
Table 39 The Variable Key Known Answer Test - TCFB Mode 173
Table 40 The Permutation Operation Known Answer Test - TCFB Mode 176
Table 41 The Substitution Table Known Answer Test - TCFB Mode 178
Table 42 The Monte Carlo Test for the Encryption Process - TCFB Mode 180
Table 43 The Monte Carlo Test for the Decryption Process - TCFB Mode 184
Table 44 The Variable TEXT Known Answer Test - TCFB-P Mode 189
Table 45 The Inverse Permutation Known Answer Test - TCFB-P Mode 193
Table 46 The Variable KEY Known Answer Test - TCFB-P Mode 197
Table 47 The Permutation Operation Known Answer Test - TCFB-P Mode 201
Table 48 The Substitution Table Known Answer Test - TCFB-P Mode 205
Table 49 The Monte Carlo Test for the Encryption Process - K-bit TCFB-P Mode 209
Table 50 The Monte Carlo Test for the Decryption Process - K-bit TCFB-P Mode 212
Table 51 The Variable TEXT Known Answer Test - TOFB Mode 218
Table 52 The Inverse Permutation Known Answer Test - TOFB Mode 220
Table 53 The Variable Key Known Answer Test - TOFB Mode 222
Table 54 The Permutation Operation Known Answer Test - TOFB Mode 225
Table 55 The Substitution Table Known Answer Test - TOFB Mode 227
Table 56 The Monte Carlo Test - TOFB Mode. 229
Table 57 The Variable TEXT Known Answer Test - TOFB-I Mode 234
Table 58 The Inverse Permutation Known Answer Test - TOFB-I Mode. 238
Table 59 The Variable KEY Known Answer Test - TOFB-I Mode 242
Table 60 The Permutation Operation Known Answer Test - TOFB-I Mode. 246
Table 61 The Substitution Table Known Answer Test - TOFB-I Mode. 250
Table A. 1 Resulting Ciphertext from the Variable Plaintext Known Answer Test for the TECB, TCBC, TCFB, and TOFB Modes of Operation. 259
Table A. 2 Resulting Ciphertext from the Variable Key Known Answer Test for the TECB, TCBC, TCFB, and TOFB Modes of Operation. 264
Table A. 3 Values To Be Used for the Permutation Operation Known Answer Test for the TECB, TCBC, TCFB, and TOFB Modes of Operation. 268
Table A. 4 Values To Be Used for the Substitution Table Known Answer Test for the TECB, TCBC, TCFB, and TOFB Modes of Operation 271
Table A. 5 Resulting Ciphertext from the Variable Plaintext Known Answer Test for TCBC-I Mode of Operation 273
Table A. 6 Resulting Ciphertext from the Inverse Permutation Known Answer Test for TCBC-I Mode of Operation (Encryption Process) 278
Table A. 7 Resulting Ciphertext from the Initial Permutation Known Answer Test for TCBC-I Mode of Operation (Decryption Process) 281
Table A. 8 Values To Be Used for the Substitution Table Known Answer Test for TCBC-I Mode of Operation 284
Table A. 9 Resulting Ciphertext from the Variable TEXT Known Answer Test for TCFB-P and TOFB-I Modes of Operation 285
Table A. 10 Values to be Used for the Substitution Table Known Answer Test for TCFB-P and TOFB-I Modes of Operation 290
Table A. 11 Resulting Ciphertext from the Variable KEY Known Answer Test for TCBC-I, TCFB-P and TOFB-I Modes of Operation 292
Table A. 12 Values To Be Used for the Permutation Operation Known Answer Test for TCBC-I,TCFB-P and TOFB-I Modes of Operation296

Abstract

The National Institute of Standards and Technology (NIST) Triple Data Encryption Algorithm (TDEA) Modes of Operation Validation System (TMOVS) specifies the procedures involved in validating implementations of the Triple DES algorithm in FIPS PUB 46-3 Data Encryption Standard (DES) (and ANSI X9.52 - 1998). The TMOVS is designed to perform automated testing on Implementations Under Test (IUTs). This publication provides brief overviews of the Triple DES algorithm and introduces the basic design and configuration of the TMOVS. Included in this overview are the specifications for the two categories of tests that make up the TMOVS, i.e., the Known Answer tests and the Monte Carlo tests. The requirements and administrative procedures to be followed by those seeking formal NIST validation of an implementation of the Triple DES algorithm are presented. The requirements described include the specific protocols for communication between the IUT and the TMOVS, the types of tests which the IUT must pass for formal NIST validation, and general instructions for accessing and interfacing with the TMOVS. An appendix with tables of values and results for the Triple DES Known Answer tests is also provided.

Key words: automated testing, computer security, cryptographic algorithms, cryptography, Triple Data Encryption Algorithm (TDEA), Triple Data Encryption Standard (TDES), Federal Information Processing Standard (FIPS), NVLAP, secret key cryptography, validation.

1. Introduction

1.1 Background

The publication specifies the tests required to validate Implementations Under Test (IUTs) for conformance to the Triple DES algorithm (TDEA) as specified in ANSI X9.52, Triple Data Encryption Algorithm Modes of Operation. When applied to IUTs that implement the TDEA, the TDEA Modes of Operation Validation System (TMOVS) provides testing to determine the correctness of the algorithm implementation. This involves both testing the specific components of the algorithm, as well as, exercising the entire algorithm implementation. In addition to determining conformance, the TMOVS is structured to detect implementation flaws including pointer problems, insufficient allocation of space, improper error handling, and incorrect behavior of the TDEA implementation.

The TMOVS is composed of two types of validation tests, the Known Answer tests and the Monte Carlo tests. The validation tests are based on the standard DES test set and the Monte Carlo test described in Special Publication 800-17, Modes of Operation Validation System (MOVS): Requirements and Procedures. By applying the same framework specified in Special Publication 800-17 to TDES, the TMOVS specifies how to validate implementations of the TDEA in software, firmware, hardware, or any combination thereof.

The Known Answer tests are designed to verify the components of the DES algorithm in the IUT (e.g., S boxes, permutation tables,...). The tests exercise each bit of every component of the
algorithm implementation. This is accomplished by processing all possible basis vectors through the IUT. To perform the Known Answer tests, the TMOVS supplies known values to the IUT and the IUT then processes the input through the implemented algorithm. The results produced by the IUT are compared to the expected values.

The Monte Carlo Test is designed to exercise the entire implementation of the TDEA, as opposed to testing only the individual components. The purpose of the Monte Carlo Test is to detect the presence of flaws in the IUT that were not detected with the controlled input of the Known Answer test. The Monte Carlo Test does not guarantee ultimate reliability of the IUT that implements the TDEA (i.e., hardware failure, software corruption, etc.). To perform the Monte Carlo Test, the TMOVS supplies the IUT with pseudorandom values for the initial plaintext, key(s), and, if applicable, initialization vector(s). Using these values, the IUT is exercised through four million DES encryption/decryption iterations. The results are then compared to the expected values.

The successful completion of the tests contained within the TMOVS is required to claim conformance of Triple DES implementations as defined in FIPS PUB 46-3, Data Encryption Standard (DES). Testing for single DES implementations is defined in Special Publication 80017, Modes of Operation Validation System (MOVS): Requirements and Procedures. Testing for the cryptographic module in which Triple DES is implemented is defined in FIPS PUB 140-1, Security Requirements for Cryptographic Modules.

1.2 Organization

Section 2 gives a brief overview of the Triple DES algorithm and the five modes of operation allowed by this algorithm as well as the interleaved and pipelined versions of several of these modes. Section 3 provides an overview of the tests that make up the Triple DES Modes of Operation Validation System (TMOVS). Section 4 describes the basic protocol used by the TMOVS. Section 5 provides a detailed explanation of each test required by the TMOVS to validate an IUT of the TDEA. Section 6 outlines the design of the TMOVS. Appendix A provides tables of values for the Known Answer tests for TDEA. These tables include:

- For modes of operation including TECB, TCBC, TCFB, and TOFB:

Table A. 1 - Resulting Ciphertext from the Variable Plaintext Known Answer Test
Table A. 2 - Resulting Ciphertext from the Variable Key Known Answer Test
Table A. 3 - Values to be Used for the Permutation Operation Known Answer Test
Table A. 4 - Values to be Used for the Substitution Tables Known Answer Test

- For the TCBC-I mode of operation:

Table A. 5 - Resulting Ciphertext from the Variable Plaintext Known Answer Test for TCBC-I

Table A. 6 - Resulting Ciphertext from the Inverse Permutation Known Answer Test for TCBC-I

Table A. 7 - Resulting Ciphertext from the Initial Permutation Known Answer Test for TCBC-I

Table A. 8 - Values to be Used for the Substitution Tables Known Answer Test for TCBCI

- For the TCFB-P and TOFB-I modes of operation:

Table A. 9 - Resulting Ciphertext from the Variable Text Known Answer Test for TCFBP and TOFB-I

Table A. 10 - Values to be Used for the Substitution Tables Known Answer Test for TCFB-P and TOFB-I

- For the TCBC-I, TCFB-P, and TOFB-I modes of operation:

Table A. 11 - Resulting Ciphertext from the Variable Key Known Answer Test for TCBCI, TCFB-P and TOFB-I

Table A. 12 - Values to be Used for the Permutation Operation Known Answer Test for TCBC-I, TCFB-P and TOFB-I

1.3 Definition(s)

1.3.1 Basis vector

A vector consisting of a " 1 " in the i " position and " 0 " in all of the other positions.

1.3.2 Block

A binary vector. In this document, the input and output of encryption and decryption operation are 64 -bit block. The bits are numbered from left to right. The plaintext and ciphertext are segmented to k-bit blocks, $\mathrm{k}=1,8,64$.

1.3.3 Ciphertext

Encrypted (enciphered) data.

1.3.4 Cryptographic boundary

An explicitly defined contiguous perimeter that establishes the physical bounds around the set of hardware, software and firmware which is used to implement the TDEA and the associated cryptographic processes.

1.3.5 Cryptographic key

A parameter that determines the transformation from plaintext to ciphertext and vice versa. (A DEA key is a 64-bit parameter consisting of 56 independent bits and 8 parity bits). Multiple (1,2 or 3) keys may be used in the Triple Data Encryption Algorithm.

1.3.6 Data Encryption Algorithm

The algorithm specified in FIPS PUB 46-3, Data Encryption Algorithm (DEA).

1.3.7 Decryption

The process of transforming ciphertext into plaintext.

1.3.8 Encryption

The process of transforming plaintext into ciphertext.

1.3.9 Exclusive-OR

The bit-by-bit modulo 2 addition of binary vectors of equal length.

1.3.10 Initialization Vector

A binary vector used as the input to initialize the algorithm for the encryption of a plaintext block sequence to increase security by introducing additional cryptographic variance and to synchronize cryptographic equipment. The initialization vector need not be secret. Some of the Triple Data Encryption Algorithm Modes of Operation require 3 initialization vectors.

1.3.11 Key

See cryptographic key.

1.3.12 Plaintext

Intelligible data that has meaning and can be read or acted upon without the application of decryption. Also known as cleartext.

1.3.13 Self-dual Key

A key with the property that when you encrypt twice with this key, the result is the initial input.

1.3.14 Triple Data Encryption Algorithm

The algorithm specified in FIPS PUB 46-3-1999, Data Encryption Algorithm.

1.4 Symbols (and Acronyms)

1.4.1 C Ciphertext

1.4.2 $\mathrm{C} n \quad$ Block of data representing the Ciphertext n
1.4.3 $\mathrm{C}^{1}, \ldots, \mathrm{C}^{64} \quad$ Bits of the Ciphertext Block
1.4.4 $\quad \mathrm{D}_{\mathrm{KEYx}}(\mathrm{Y}) \quad$ Decrypt Y with the key $\mathrm{KEY}_{\mathrm{x}}$
1.4.5 DEA The Data Encryption Algorithm specified in FIPS 46-3
1.4.6 DES Data Encryption Standard specified in FIPS 46-3
1.4.7 $\quad \mathrm{E}_{\text {KEYx }}(\mathrm{Y}) \quad$ Encrypt Y with the key $\mathrm{KEY}_{\mathrm{x}}$
1.4.8 FIPS PUB Federal Information Processing Standard Publication
1.4.9 I Input Block
1.4.10 In Block of data representing the Input Block n
1.4.11 $\mathrm{I}^{1}, \ldots, \mathrm{I}^{64} \quad$ Bits of the Input Block
1.4.12 IUT Implementation Under Test
1.4.13 IV Initialization Vector
1.4.14 IVn Block of data representing IV n
1.4.15 KEYn Block of data representing KEY n
1.4.16 NIST National Institute of Standards and Technology
1.4.17 O Output Block
1.4.18 $\mathrm{O}^{1}, \ldots, \mathrm{O}^{64}$ Bits of the Output Block
1.4.19 On Block of data representing Output Block n
1.4.20 P Plaintext
1.4.21 $\mathrm{P}^{1}, \ldots, \mathrm{P}^{64}$ Bits of the Plaintext Block
1.4.22 Pn Block of data representing Plaintext n
1.4.23 RESULTn Block of data representing Plaintext n, if encryption state, or Ciphertext n, if decryption state
1.4.24 TCBC TDEA Cipher Block Chaining Mode of Operation
1.4.25 TCBC-I TDEA Cipher Block Chaining Mode of Operation - Interleaved
1.4.26 TCFB TDEA Cipher Feedback Mode of Operation
1.4.27 TCFB-P TEA Cipher Feedback Mode of Operation - Pipelined
1.4.28 TDEA Triple Data Encryption Algorithm specified in FIPS 46-3
1.4.29 TDES Triple Data Encryption Standard specified in FIPS 46-3
1.4.30 TECB TDEA Electronic Codebook Mode of Operation
1.4.31 TEXT n Block of data representing Plaintext n, if encryption state, or Ciphertext n, if decryption state
1.4.32 TMOVS TDEA Modes of Operation Validation System
1.4.33 TOFB TDEA Output Feedback Mode of Operation
1.4.34 TOFB-I TDEA Output Feedback Mode of Operation - Interleaved
1.4.35 VARIABLE n_{n} Block of data representing the value of VARIABLE for the $n^{\text {th }}$ iteration
1.4.36 $\mathrm{X} \oplus \mathrm{Y} \quad$ Bit-wise inclusive-or of two bit-strings X and Y of the same bit length.

2. Triple Data Encryption Algorithm (TDEA)

FIPS PUB 46-3-1999, Data Encryption Standard (DES), (and ANSI X9.52 - 1998) specifies the Triple Data Encryption Algorithm (TDEA) modes of operation for the enhanced cryptographic protection of digital data. The modes of operation for TDEA provide a means of extending the effective key space of the Data Encryption Algorithm (DEA). Certain modes also provide increased protection against more sophisticated cryptanalytic attacks. FIPS PUB 46-3 1999 enhances the basic level of cryptographic protection of digital data provided by DEA, thus extending the useful lifetime of this technology.

The TDEA consists of three components - the DES algorithm (DEA), multiple keys, and initialization vector(s). The DEA is called three times in the TDEA. The TDEA utilizes one to three keys and, depending on the mode of operation being implemented, zero, one or three initialization vectors (IVs).

The basic processing involved in the TDEA is as follows: An input block is read into the first DEA (DEA1) and encrypted using the first key (KEY1). The output produced from this stage is read directly into the second DEA (DEA2) and decrypted using the second key (KEY2). The output produced by the second stage is directly read into the third DEA (DEA3) and encrypted using the third key (KEY3). The resultant output block is used, according to the mode implemented, in the calculation of the ciphertext. Note that the output for the intermediate DEA stages is never revealed outside the cryptographic boundary.

Three different keying options are allowed by the TDEA. The first option specifies that all the keys are independent, i.e., KEY1, KEY2, and KEY3 are independent. This is referred to as Keying Option 1 in FIPS PUB 46-3-1999 (and ANSI X9.52-1998). It will be referred to as 3key TDES in this document. The second option specifies that KEY1 and KEY2 are independent and KEY3 is equal to KEY1, i.e., KEY1 and KEY2 are independent, KEY3 = KEY1. This is referred to as Keying Option 2 in FIPS PUB 46-3 - 1999 (and ANSI X9.52 - 1998) and will be referred to as 2-key TDES in this document. And the third option specifies that KEY1, KEY2 and KEY3 are equal, i.e., KEY1=KEY2=KEY3. This is referred to as Keying Option 3 in FIPS PUB 46-3 - 1999 (and ANSI X9.52 - 1998 and will be referred to as 1-key TDES in this document. 1-key TDES is equivalent to single DES.

The initialization vector (IV) must meet the following attributes as specified by the TDEA:

- For TECB, no IV is used.
- For all modes using an IV, the IV may be public information.
- For TOFB and TOFB-I, the IV should never be a constant.
- If the mode of operation implemented requires one IV, it may be generated in one of two ways:
- Randomly or Pseudo-randomly
- As a counter
- If the mode of operation implemented requires three IVs, they should be generated as follows:
- IV1 should be generated in the same manner as one IV (described above).
- $\quad \mathrm{IV} 2=\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64}$, where $\mathrm{R}_{1}=5555555555555555$.
- $\operatorname{IV} 3=\operatorname{IV} 1+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA.

A thorough explanation of the processing involved in the four modes of operation supplied by TDEA, as well as the new message-interleaved and pipelined versions of these modes can be found in FIPS PUB 46-3 - 1999 (and ANSI X9.52-1998). A brief explanation of each mode is found below.

2.1 TDEA Electronic Codebook (TECB) Mode

Figure 1 TDEA Electronic Codebook (TECB) Mode
The TDEA Electronic Codebook (TECB) mode is shown in Figure 1. In TECB encryption, a 64bit plaintext data block (P) is used directly as the input block (I). The input block is processed through the first DEA (DEA1) in the encrypt state using KEY1. The output of this process is fed directly to the input of the second DEA (DEA2) where DES is performed in the decrypt state using KEY2. The output of this process is fed directly to the input of the third DEA (DEA3) where DES is performed in the encrypt state using KEY3. The resultant 64 -bit output block (O) is used directly as ciphertext (C).

In TECB decryption, a 64-bit ciphertext block (C) is used directly as the input block (I). The keying sequence is reversed from the encrypt process. The input block is processed through DEA3 in the decrypt state using KEY3. The output of this process is fed directly to the input of DEA2, where DES is performed in the encrypt state using KEY2, and the result is directly fed to the input of DEA1, where DES is performed in the decrypt state using KEY1. The resultant 64bit output block (O) produces the plaintext (P).

2.2 TDEA Cipher Block Chaining (TCBC) Mode

Figure 2 TDEA Cipher Block Chaining (TCBC) Mode
As shown in the upper half of Figure 2, the TDEA Cipher Block Chaining (TCBC) mode begins processing by dividing a plaintext message into 64 -bit data blocks. In TCBC encryption, the first
input block $\left(\mathrm{I}_{1}\right)$ is formed by exclusive-ORing the first plaintext data block $\left(\mathrm{P}_{1}\right)$ with a 64-bit initialization vector IV, i.e., ($\mathrm{I}_{1}=\mathrm{IV} \oplus \mathrm{P}_{1}$). The input block is processed through DEA1 in the encrypt state using KEY1. The output of this process is fed directly to the input of DEA2, which performs DES in the decrypt state using KEY2. The output of this process is fed directly to the input of DEA3, which performs DES in the encrypt state using KEY3. The resultant 64-bit output block $\left(\mathrm{O}_{1}\right)$ is used directly as ciphertext $\left(\mathrm{C}_{1}\right)$, i.e., $\left(\mathrm{C}_{1}=\mathrm{O}_{1}\right)$. This first ciphertext block is then exclusive-ORed with the second plaintext data block to produce the second input block, i.e., $\left(\mathrm{I}_{2}\right)$ $=\left(C_{1} \oplus P_{2}\right)$. Note that I_{2} and P_{2} now refer to the second block. The second input block is processed through the TDEA to produce the second ciphertext block. This encryption process continues to "chain" successive cipher and plaintext blocks together until the last plaintext block in the message is encrypted. If the message does not consist of an integral number of data blocks, then the final partial data block should be encrypted in a manner specified for the application.

In TCBC decryption (see the lower half of Figure 2), the first ciphertext block $\left(\mathrm{C}_{1}\right)$ is used directly as the input block $\left(\mathrm{I}_{1}\right)$. The keying sequence is reversed from the encrypt process. The input block is processed through DEA3 in the decrypt state using KEY3. The output of this process is fed directly to the input of DEA2, where DES is processed in the encrypt state using KEY2. This resulting value is directly fed to the input of DEA1, where DES is processed in the decrypt state using KEY1. The resulting output block is exclusive-ORed with the IV (which must be the same as that used during encryption) to produce the first plaintext block, i.e., ($\mathrm{P}_{1}=\mathrm{O}_{1} \oplus$ IV). The second ciphertext block is then used as the next input block and is processed through the TDEA as shown above. The resulting output block is exclusive-ORed with the first ciphertext block to produce the second plaintext data block, i.e., $\left(\mathrm{P}_{2}=\mathrm{O}_{2} \oplus \mathrm{C}_{1}\right)$. (NOTE $-\mathrm{P}_{2}$ and O_{2} refer to the second block.) The TCBC decryption process continues in this manner until the last complete ciphertext block has been decrypted. Ciphertext representing a partial data block must be decrypted in a manner as specified for the application.

2.3 TDEA Cipher Block Chaining - Interleaved (TCBC-I) Mode

Both the encryption and decryption processes of the TDEA Cipher Block Chaining - Interleaved (TCBC-I) mode of operation require 3 IVs, an n block message interleaved into three sub-texts, and 3 keys. The IVs, denoted IV1, IV2, and IV3, are generated based on the specifications mentioned in Section 2. For both the encryption and decryption processes of the TCBC-I mode of operation, these values are assigned to the initial values of $\mathrm{C} 1, \mathrm{C} 2$, and C 3 .

Prior to commencing both the TCBC-I encryption and decryption processes, the TEXT (which refers to plaintext, P , if encrypting and ciphertext, C , if decrypting) is interleaved into three subtexts. This is accomplished by taking an n-block TEXT and subdividing it into groups consisting of three blocks each accordingly:
$\mathrm{TEXT}=\left(\mathrm{TEXT}_{1}, \mathrm{TEXT}_{2}, \ldots, \mathrm{TEXT}_{n}\right)=\left(\mathrm{TEXT}_{1,1}, \mathrm{TEXT}_{2,1}, \mathrm{TEXT}_{3,1}, \mathrm{TEXT}_{1,2}, \mathrm{TEXT}_{2,2}\right.$, $\operatorname{TEXT}_{3,2}$, TEXT $_{1,3}$, TEXT $_{2,3}$, TEXT $_{3,3}, \ldots$, TEXT $_{1, \mathrm{i}}$, TEXT $_{2, \mathrm{i}}$, TEXT $_{3, \mathrm{i}}$, where $\mathrm{i}=\mathrm{n} / 3$.

Then the TEXT is decimated into three sub-texts:

$$
\mathrm{TEXT}^{1}=\text { TEXT }_{1,1}, \text { TEXT }_{1,2}, \text { TEXT }_{1,3}, \ldots, \text { TEXT }_{1, n 1}
$$

$$
\begin{aligned}
& \mathrm{TEXT}^{2}=\mathrm{TEXT}_{2,1}, \mathrm{TEXT}_{2,2}, \operatorname{TEXT}_{2,3}, \ldots, \mathrm{TEXT}_{2, n 2} ; \\
& \text { TEXT }^{3}=\mathrm{TEXT}_{3,1}, \mathrm{TEXT}_{3,2}, \mathrm{TEXT}_{3,3}, \ldots, \mathrm{TEXT}_{3, n} ;
\end{aligned}
$$

where

- if $n \bmod 3=0$, then $n 1=n 2=n 3=n / 3$; The last block in TEXT is $\operatorname{TEXT}_{3, n 3}$.
- if $n \bmod 3=1$, then $n 1=(n+2) / 3, n 2=n 3=(n-1) / 3$; The last block in TEXT is TEXT $_{1, n 1}$.
- if $n \bmod 3=2$, then $n 1=n 2=(n+1) / 3, n 3=(n-2) / 3$; The last block in TEXT is TEXT $_{2, n 2}$.

The TCBC-I mode of operation is intended for systems equipped with multiple DEA processors. Each of the DEA processors used in both the encryption and decryption processes utilize the same processing as that used in the TCBC mode of operation for all three sub-texts. The DEA processors operate simultaneously.

During the encryption process of the TCBC-I mode of operation, for $\mathrm{j}=1$ to 3 and $\mathrm{i}=1$ to n, the $\mathrm{P}_{\mathrm{j}, \mathrm{i}}$ is exclusive-ORed with the $\mathrm{C}_{\mathrm{j}, \mathrm{i}-1}$. This value is processed through DEA1 in the encrypt state using KEY1. The output of this process is fed directly to the input of DEA2, which performs DES in the decrypt state using KEY2. The output of this process is fed directly to the input of DEA3, which performs DES in the encrypt state using KEY3. The resultant 64 -bit output block is used directly as the $\mathrm{C}_{\mathrm{j}, \mathrm{i}}$.

With three DEA functional blocks, DEA1, DEA2, and DEA3, which are simultaneously clocked, the encryption of three sub-plaintexts can be interleaved.

In pseudocode terms,

```
For j = 1 to 3 {
    C
    Fori=1 to n}\mp@subsup{\boldsymbol{n}}{\mathbf{j}}{{
        C
        Output C Cj,i
    }
}
```

During the decryption process of the TCBC-I mode of operation, for $\mathrm{j}=1$ to 3 and $\mathrm{i}=1$ to n, the $\mathrm{C}_{\mathrm{j}, \mathrm{i}}$ is processed through DEA3 in the decrypt state using KEY3. The output of this process is fed directly to the input of DEA2, which performs DES in the encrypt state using KEY2. The output of this process is fed directly to the input of DEA1, which performs DES in the decrypt state using KEY1. The resultant 64-bit output block is exclusive-ORed with the $\mathrm{C}_{\mathrm{j}, \mathrm{i}-1}$. This value is used directly as the $\mathrm{P}_{\mathrm{j}, \mathrm{i}}$.

Because there are three DEA functional blocks, $\mathrm{DEA}_{1}, \mathrm{DEA}_{2}$, and DEA_{3}, which are simultaneously clocked, the decryption of three sub-ciphertexts can be interleaved.

In terms of pseudocode,

```
For \(\mathbf{j}=1\) to 3 \{
    \(\mathbf{C}_{\mathrm{j}, 0}=\mathbf{I V}_{\mathrm{j}}\)
    For \(i=1\) to \(n_{j}\{\)
            \(\mathbf{P}_{\mathrm{j}, \mathrm{i}}=\mathrm{D}_{\mathrm{KEY} 1}\left(\mathrm{E}_{\mathrm{KEY} 2}\left(\mathrm{D}_{\mathrm{KEY} 3}\left(\mathrm{C}_{\mathrm{j}, \mathrm{i}}\right)\right)\right) \oplus \mathrm{C}_{\mathrm{j}, \mathrm{i}-1}\)
        Output \(\mathrm{P}_{\mathrm{j}, \mathrm{i}}\)
        \}
    \}
```

2.4 TDEA Cipher Feedback (TCFB) Mode

Figure 3 TDEA Cipher Feedback (TCFB) Mode
The TDEA Cipher Feedback (TCFB) mode is shown in Figure 3. A message to be encrypted is divided into K -bit data units, where K may equal 1 through 64 inclusively ($\mathrm{K}=1,2, \ldots, 64$). In both the TCFB encrypt and decrypt operations, an initialization vector (IV) of length 64 is used. The input block is assigned the value of the IV, i.e., ($I=I V$). The input block is processed through DEA1 in the encrypt state using KEY1. The output of this process is fed directly to the input of DEA2, where DES is performed in the decrypt state using KEY2. The output of this process is fed directly to the input of DEA3, where DES is performed in the encrypt state using KEY3. During encryption, ciphertext is produced by exclusive-ORing a K-bit plaintext data unit with the most significant K bits of the output block, i.e., $\left(\mathrm{C}^{1}, \mathrm{C}^{2}, \ldots, \mathrm{C}^{\mathrm{K}}\right)=\left(\mathrm{P}^{1} \oplus \mathrm{O}^{1}, \mathrm{P}^{2} \oplus \mathrm{O}^{2}, \ldots, \mathrm{P}^{\mathrm{K}} \oplus \mathrm{O}^{\mathrm{K}}\right)$, where each $\mathrm{C}^{i}, \mathrm{P}^{\mathrm{i}}$, and O^{i} represents a single bit of the ciphertext block C , plaintext block P , and
output block O, respectively. Similarly, during decryption, plaintext is produced by exclusiveORing a K-bit unit of ciphertext with the most significant K bits of the output block, i.e., $\left(\mathrm{P}^{1}, \mathrm{P}^{2}, \ldots, \mathrm{P}^{\mathrm{K}}\right)=\left(\mathrm{C}^{1} \oplus \mathrm{O}^{1}, \mathrm{C}^{2} \oplus \mathrm{O}^{2}, \ldots, \mathrm{C}^{\mathrm{K}} \oplus \mathrm{O}^{\mathrm{K}}\right)$. In both cases, the unused bits of the output block are discarded. For both the encryption and decryption processes, the next input block is created by discarding the most significant K bits of the previous input block, shifting the remaining bits K positions to the left and then inserting the K bits of ciphertext just produced in the encryption operation or just used in the decryption operation into the least significant bit positions, i.e., $\left(\mathrm{I}^{1}, \mathrm{I}^{2}, \ldots, \mathrm{I}^{64}\right)=\left(\mathrm{I}^{[\mathrm{K}+1]}, \mathrm{I}^{[K+2]}, \ldots, \mathrm{I}^{64}, \mathrm{C}^{1}, \mathrm{C}^{2}, \ldots, \mathrm{C}^{\mathrm{K}}\right)$. NOTE -- I, P, and C now refer to the second block. The second block is processed through the TDEA to produce the second ciphertext block (or plaintext block, if decrypting). The input block is then processed through DEA1 in the encrypt state. This process continues until the entire plaintext message has been encrypted or until the entire ciphertext message has been decrypted. For each operation of the TDEA, one K-bit unit of plaintext produces one K-bit unit of ciphertext, and one K-bit unit of ciphertext produces one K-bit unit of plaintext.

2.5 TDEA Cipher Feedback Mode of Operation - Pipelined (TCFB-P)

Both the encryption and decryption processes of the TDEA Cipher Feedback - Pipelined (TCFBP) mode of operation require 3 IVs, a K-bit TEXT and 3 keys. The IVs, denoted IV1, IV2, and IV3 are generated based on the specifications mentioned in the introduction of Section 2. For both the encryption and decryption processes of the TCFB-P mode of operation, the IV values are assigned to the input block of DEA1 in succession.

The TCFB-P mode of operation is intended for systems equipped with multiple DEA processors. Each of the DEA processors used in both the encryption and decryption processes utilize the same processing as that used in the TCFB mode of operation. With three DEA functional blocks, which are simultaneously clocked, and with three IVs, the TCFB encryption and decryption processes can be pipelined.

Prior to commencing both the TCFB-P encryption and decryption processes, a 3-step initialization process must be conducted as follows:

Step 1: IV1 is input to DEA1 and encrypted using KEY1.
Step 2: The output of DEA1 is input to DEA2 and decrypted using KEY2. Simultaneously, IV2 is input to DEA1 and encrypted using KEY1.

Step 3: The output of DEA2 is input to DEA3 and encrypted using KEY3. This produces the first output block. Simultaneous with encryption by DEA3, the output of DEA1 (from step 2) is input to DEA2 and decrypted using KEY2, and IV3 is input to DEA1 and encrypted using KEY1.

During encryption, a K-bit ciphertext block is produced by exclusive-ORing the most significant K-bits of the output block from DEA3 with the K-bit plaintext block.

Successive input blocks for DEA1 are formed by discarding the most significant K bits of the previous DEA1 input block, shifting the remaining bits K positions to the left and then inserting the K bits of the newest K-bit ciphertext block into the least significant bit positions. DEA1, DEA2 and DEA3 are run simultaneously to produce successive output blocks that are exclusiveORed to successive K-bit plaintext blocks to produce successive K-bit ciphertext blocks.

Decryption is performed in the same manner as encryption, except that the role of the plaintext and the ciphertext are reversed.

2.6 TDEA Output Feedback (TOFB) Mode

Figure 4 TDEA Output Feedback (TOFB) Mode
The TDEA Output Feedback (TOFB) mode is shown in Figure 4. A message to be encrypted is divided into 64-bit data units. In both the TOFB encrypt and decrypt operations, a 64-bit initialization vector (IV) is used. The IV is used as input in the first round, i.e., (I = IV). This input block is processed through DEA1 where DES is processed in the encrypt state using KEY1. The output of this process is fed directly to the input of DEA2 where DES is processed in the decrypt state using KEY2. The output of this process is fed directly to the input of DEA3 where DES is processed in the encrypt state using KEY3. During encryption, ciphertext is produced by exclusive-ORing a plaintext data unit with an output block, i.e., $(C=P \oplus O)$. Similarly, during
decryption, plaintext is produced by exclusive-ORing a ciphertext with an output block, i.e., ($\mathrm{P}=$ $\mathrm{C} \oplus \mathrm{O})$. In both cases the next input block is assigned the value of the output block, i.e., $(\mathrm{I}=\mathrm{O})$. This input block is then processed through the TDEA as described above. This process continues until the entire plaintext message has been encrypted or until the entire ciphertext message has been decrypted.

2.7 TDEA Output Feedback Mode of Operation - Interleaved (TOFB-I)

Both the encryption and decryption processes of the TDEA Output Feedback - Interleaved (TOFB-I) mode of operation require 3 IVs, a TEXT and 3 keys. The IVs, denoted IV1, IV2, and IV3, are generated based on the specifications mentioned in the introduction of Section 2. For both the encryption and decryption processes of the TOFB-I mode of operation, the IV values are assigned to the input block of DEA1 in succession.

The TOFB-I mode of operation is intended for systems equipped with multiple DEA processors. Each of the DEA processors used in both the encryption and decryption processes utilize the same processing as that used in the TOFB mode of operation. With three DEA functional blocks, which are simultaneously clocked, and with three IVs, the TOFB encryption and decryption processes can be interleaved.

Prior to commencing both the TOFB-I encryption and decryption processes, a 3-step initialization process must be conducted as follows:

Step 1: IV1 is input to DEA1 and encrypted using KEY1.
Step 2: The output of DEA1 is input to DEA2 and decrypted using KEY2. Simultaneously, IV2 is input to DEA1 and encrypted using KEY1.

Step 3: The output of DEA2 is input to DEA3 and encrypted using KEY3. This produces the first output block. Simultaneous with encryption by DEA3, the output of DEA1 (from step 2) is input to DEA and decrypted using KEY2, and IV3 is input to DEA1 and encrypted using KEY1.

During encryption, a ciphertext block is produced by exclusive-ORing the output block from DEA3 with the plaintext block.

Successive input blocks for DEA1 are formed by assigning them the value of the newest ciphertext block. DEA1, DEA2 and DEA3 are run simultaneously to produce successive output blocks that are exclusive-ORed to successive plaintext blocks to produce successive ciphertext blocks.

Decryption is performed in the same manner as encryption, except that the role of the plaintext and the ciphertext are reversed.

3. MODES OF OPERATION VALIDATION SYSTEM FOR THE TRIPLE DES (TDES) ALGORITHM

The TMOVS for the Triple DES algorithm (TDEA) consists of two types of tests, the Known Answer tests and the Monte Carlo tests. The TMOVS provides conformance testing for the components of the algorithm, as well as testing for apparent implementation errors.

The IUTs may be written in software, firmware, hardware, or any combination thereof.
An IUT must allow the TMOVS to have control over the required input parameters for validation to be feasible. The ability to initialize or load known values to the variables required by a specific test may exist at the device level or the chip level in an IUT. If an IUT does not allow the TMOVS to have control over the input parameter values, the TMOVS tests cannot be performed.

An IUT may implement encryption only, decryption only, or both encryption and decryption. This will determine which TMOVS tests will be performed by an IUT.

The following subsections provide an overview of the Known Answer tests and the Monte Carlo tests. This overview discusses the functionality of each test and the components of the TDEA tested by the individual tests.

3.1 The Known Answer Tests

The Known Answer tests are based on the standard DES test set discussed in Special Publication 500-20. They are designed to verify the components of the DES algorithm in the IUT. These components include the initial permutation IP, the inverse permutation IP^{-1}, the expansion matrix E , the data permutation P , the key permutations PC 1 and PC 2 , and the substitution tables S_{1}, S_{2}, \ldots, S_{8}. The tests exercise each bit of every component of the algorithm by processing all possible basis vectors through the IUT.

A generic overview of the sets of Known Answer tests required for the validation of IUTs implementing the encryption and/or decryption processes of all modes of operation for the TDEA is discussed below.

3.1.1 The Encryption Process

An IUT which allows encryption requires the successful completion of five Known Answer tests: the Variable Plaintext Known Answer Test, the Inverse Permutation Known Answer Test, the Variable Key Known Answer Test for the Encryption Process, the Permutation Operation Known Answer Test for the Encryption Process, and the Substitution Table Known Answer Test for the Encryption Process.

These Known Answer tests are also used in the testing of IUTs implementing the decryption process of the TCFB, TCFB-P, TOFB and TOFB-I modes of operation. This is due to the fact that these modes call the three DEA stages in the same order for both the encryption and decryption processes, i.e., encrypt KEY1, decrypt KEY2 and encrypt KEY3.

3.1.1.1 The Variable Plaintext Known Answer Test

To perform the Variable Plaintext Known Answer Test, the TMOVS supplies the IUT with initial values for the three keys, the plaintext(s) and, if applicable, the initialization vector(s). For IUTs supporting the interleaved and pipelined configurations of TDES, initial values for three initialization vectors are supplied by the TMOVS. For IUTs supporting the TCBC-I mode of operation, an initial value is supplied to three plaintext variables. These three plaintext variables are initialized to the same value. The other modes of operation only require one plaintext variable. The TMOVS initializes all keys to zero (with odd parity set). Each block of data input into the TDEA is represented as a 64bit basis vector.

For the four basic modes of operation (TECB, TCBC, TCFB, and TOFB), the input block is processed through the DEA three times -- first in the encrypt state with KEY1, next in the decrypt state with KEY2, and lastly, in the encrypt state with KEY3. The resulting output block is used in the calculation of the ciphertext.

For modes of operation supporting interleaving and pipelining (TCBC-I, TCFB-P, TOFBI), it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors resulting in three output blocks which are then used in the calculation of the three ciphertext values. The formation of the input block is dependent upon the mode of operation supported. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

This test is repeated 64 times, using the 64 input basis vectors, allowing for every possible basis vector to be tested. At the completion of the $64^{\text {th }}$ cycle, all results are verified for correctness.

If correct results are obtained from an IUT, the Variable Plaintext Known Answer Test has verified the initial permutation IP and the expansion matrix E via the encrypt operation by presenting a full set of basis vectors to IP and to E. The test also verifies the inverse permutation IP^{-1} via the decrypt operation. It does this by presenting the recovered basis vectors to IP^{-1}.

3.1.1.2 The Inverse Permutation Known Answer Test

To perform the Inverse Permutation Known Answer Test, the TMOVS supplies the IUT with initial values for the three keys, the plaintext(s) and, if applicable, the initialization vector(s). For IUTs supporting the interleaved and pipelined configurations of TDES, three plaintext values and three initialization vector values are supplied by the TMOVS. The values supplied are dependent upon the modes of operation being implemented.

This test performs the same processing as the Variable Plaintext Known Answer Test. The difference is that the plaintext value(s) for this test are set to the ciphertext result(s)
obtained from the Variable Plaintext Known Answer Test for the corresponding modes of operation.

The key is initialized to zero (with odd parity set). This key is a self-dual key. A self-dual key is a key with the property that when you encrypt twice with this key, the result is the initial input. Therefore, the result is the same as encrypting and decrypting with the same key. Using a self-dual key allows basis vectors to be presented to components of the DEA to validate the IUT's performance. This is discussed further in the last paragraph of this section.

For the four basic modes of operation (TECB, TCBC, TCFB, and TOFB), the input block is processed through the DEA three times -- first in the encrypt state with KEY1, next in the decrypt state with KEY2, and lastly, in the encrypt state with KEY3. The resulting output block is used in the calculation of the ciphertext, which is then recorded.

For modes of operation supporting interleaving and pipelining (TCBC-I, TCFB-P, TOFBI), it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors, resulting in three output blocks which are then used in the calculation of the three ciphertext values. The formation of the input block is dependent upon the mode of operation supported. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

Using the plaintext and, if applicable, the IV's supplied by the TMOVS, the IUT runs the TDES for 64 cycles. At the completion of the $64^{\text {th }}$ cycle, all results are verified for correctness.

This test, when applied to an IUT, verifies the inverse permutation (IP^{-1}) via the encrypt operation, because as the basis vectors are recovered, each basis vector is presented to the inverse permutation IP^{-1}. By performing the decrypt operation, the initial permutation IP and the expansion matrix E are verified by presenting the full set of basis vectors to them as well.

3.1.1.3 The Variable Key Known Answer Test for the Encryption Process

To implement the Variable Key Known Answer Test for the Encryption Process, the TMOVS supplies the IUT with initial values for the three keys, the plaintext(s), and, if applicable, the initialization vector(s). For IUTs supporting the interleaved and pipelined configurations of TDES, three initialization vector values are supplied by the TMOVS. For IUTs supporting the TCBC-I mode of operation, an initial value is supplied to three plaintext variables. These three plaintext variables are initialized to the same value. The other modes of operation only require one plaintext variable.

During the initialization process, the plaintext value(s) and the initialization vector value(s) are set to zero. All three keys for each round are initialized to a 56-bit key basis vector
which contains a " 1 " in the $\mathrm{i}^{\text {th }}$ significant position and " 0 "s in all remaining significant positions of the keys, i.e., KEY1 $=$ KEY2 $=$ KEY3. (NOTE - the parity bits are not considered as significant bits. These parity bits may be "1"s or "0"s to maintain odd parity.)

For the four basic modes of operation (TECB, TCBC, TCFB, and TOFB), the input block is processed through the DEA three times -- first in the encrypt state with KEY1, next in the decrypt state with KEY2, and lastly, in the encrypt state with KEY3. The resulting output block is used in the calculation of the ciphertext, which is then recorded.

For modes of operation supporting interleaving and pipelining (TCBC-I, TCFB-P, TOFBI), it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors, resulting in three output blocks which are then used in the calculation of the three ciphertext values. The formation of the input block is dependent upon the mode of operation supported. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

This test is repeated 56 times, using the 56 key basis vectors to allow for every possible vector to be tested. At the completion of the $56^{\text {th }}$ cycle, all results are verified for correctness.

When this test is performed for an IUT, the 56 possible key basis vectors which yield unique keys are presented to PC1, verifying the key permutation PC1 via the encrypt operation. Also, during the encrypt operation, a complete set of key basis vectors is presented to PC2 as well, so PC2 is verified.

This test also verifies the right shifts in the key schedule via the DES decrypt operation as the basis vectors are recovered.

3.1.1.4 The Permutation Operation Known Answer Test for the Encryption Process

To implement the Permutation Operation Known Answer Test for the Encryption Process, the TMOVS supplies the IUT with 32 key values. The TMOVS also supplies initial values for the plaintext(s) and, if applicable, the initialization vector(s). For IUTs supporting the interleaved and pipelined configurations of TDES, initial values for three initialization vectors are supplied by the TMOVS. For IUTs supporting the TCBC-I mode of operation, an initial value to be assigned to all three plaintext values is supplied. The other modes of operation only require one plaintext value. During the initialization of a test, the plaintext value(s) and the first (or only) initialization vector value are set to 0 , while the key values are assigned to one of the 32 key values supplied by the TMOVS. Note that KEY1=KEY2=KEY3. If more than one initialization vector is used by a TDES mode of operation, the other IVs are computed according to specifications in Section 2.

For the four basic modes of operation (TECB, TCBC, TCFB, and TOFB), the input block is processed through the DEA three times -- first in the encrypt state with KEY1, next in the decrypt state with KEY2, and lastly, in the encrypt state with KEY3. The resulting output block is used in the calculation of the ciphertext, which is then recorded.

For modes of operation supporting interleaving and pipelining (TCBC-I, TCFB-P, TOFBI), it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors, resulting in three output blocks which are then used in the calculation of the three ciphertext values. The formation of the input block is dependent upon the mode of operation supported. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

Each of the 32 key values supplied by the TMOVS is tested. At the completion of the $32^{\text {nd }}$ cycle, all results are verified for correctness.

The 32 key values used in this test present a complete set of basis vectors to the permutation operator P. By doing so, P is verified. This occurs when both the encrypt and decrypt operations are performed.

3.1.1.5 The Substitution Table Known Answer Test for the Encryption Process

To implement the Substitution Table Known Answer Test for the Encryption Process, the TMOVS supplies the IUT with 19 key-data sets. Depending on the mode of operation implemented, the data value will be assigned to the plaintext or to the initialization vector variables. For IUTs supporting the interleaved and pipelined configurations of TDES, initial values for three initialization vectors are also supplied by the TMOVS. For the TCBC-I mode of operation, initial values for three plaintext variables are supplied as well. The other modes of operation only require one plaintext variable. During initialization, the plaintext values (or the initialization vector values, depending on the mode of operation supported), and the key values are initialized to one of the 19 key-data sets supplied by the TMOVS.

For the four basic modes of operation (TECB, TCBC, TCFB, and TOFB), the input block is processed through the DEA three times -- first in the encrypt state with KEY1, next in the decrypt state with KEY2, and lastly, in the encrypt state with KEY3. The resulting output block is used in the calculation of the ciphertext, which is then recorded.

For modes of operation supporting interleaving and pipelining (TCBC-I, TCFB-P, TOFBI), it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors, resulting in three output blocks which are then used in the calculation of the three ciphertext values. The formation of the input block is dependent upon the mode of operation supported. Note that the design of the TMOVS
assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

This test is repeated for each of the 19 key-data sets, allowing every value in the set of 19 key-data sets to be tested. At the completion of the $19^{\text {th }}$ set, all results are verified for correctness.

The set of 19 key-data sets used in this test result in every entry of all eight S-box substitution tables being used at least once during both the encrypt and decrypt operations. Thus, this test verifies the 64 entries in each of the eight substitution tables.

3.1.2 The Decryption Process

The five Known Answer tests required for validation of IUTs implementing the decryption process of the TDEA consist of the Variable Ciphertext Known Answer Test, the Initial Permutation Known Answer Test, the Variable Key Known Answer Test for the Decryption Process, the Permutation Operation Known Answer Test for the Decryption Process and the Substitution Table Known Answer Test for the Decryption Process. These tests are only performed by IUTs that support the TECB, TCBC, and TCBC-I modes of operation, since only these modes of operation utilize the three DES stages in reverse order during the decryption process. The TCFB, TCFB-P, TOFB, and TOFB-I modes of operation utilize the DES calls in the same order used in the encryption process, i.e., encrypt with KEY1, decrypt with KEY2 and encrypt with KEY3. Therefore, these modes of operation should be tested using the same Known Answer tests used for IUTs that support the encryption process.

3.1.2.1 The Variable Ciphertext Known Answer Test

To perform the Variable Ciphertext Known Answer Test, the TMOVS supplies the IUT with 64 ciphertext values. These values are obtained from the results of the Variable Plaintext Known Answer Test if the IUT performs both encryption and decryption. Otherwise, the TMOVS will supply the IUT with the ciphertext values. If applicable, the TMOVS also supplies initial values for the initialization vector(s). For IUTs supporting the interleaved configuration of the TCBC mode of operation (TCBC-I), 64 sets of ciphertext values consisting of three ciphertext values each and three initialization vectors are supplied. These supplied values are dependent upon the mode of operation being implemented. The keys and initialization vectors are initialized to zero for each test.

For the TECB and TCBC modes of operation, the value of the ciphertext is used directly as the input block of data. The input block is processed through the DEA three times -first in the decrypt state with KEY3, next in the encrypt state with KEY2, and lastly, in the decrypt state with KEY1. The resulting output block is used in the calculation of the plaintext, which is then recorded.

For the TCBC-I mode of operation, it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors, resulting in three
output blocks which are then used in the calculation of the three plaintext values. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

This test is repeated once for each of the 64 ciphertext values. If the 64 resulting plaintext values form the set of basis vectors, it can be assumed that all of the operations were performed successfully.

As the basis vectors are recovered via the decrypt operation, they are presented to the inverse permutation IP^{-1}, thus verifying it. This test also verifies the initial permutation IP and the expansion matrix E via the encrypt operation by presenting a full set of basis vectors to these components.

3.1.2.2 The Initial Permutation Known Answer Test

To perform the Initial Permutation Known Answer Test, the TMOVS supplies the IUT with initial values for the ciphertext, the keys, and, if applicable, the initialization vector(s). For IUTs supporting the TCBC-I mode of operation, three ciphertext values and three initialization vector values are supplied. The values supplied are dependent upon the mode of operation being implemented. The ciphertext value(s) are set to the plaintext result(s) obtained from the Variable Ciphertext Known Answer Test.

The key is initialized to zero (with odd parity set). This key is a self-dual key. A self-dual key is a key with the property that when you decrypt (or encrypt) twice with this key, the result is the initial input. Therefore, the result is the same as encrypting and decrypting with the same key. Using a self-dual key allows basis vectors to be presented to components of the DEA to validate the IUT's performance. This is discussed further in the last paragraph of this section.

For the TECB and TCBC modes of operation, the values of the ciphertext are used directly as the input block of data. The input block is processed through the DEA three times -- first in the decrypt state with KEY3, next in the encrypt state with KEY2, and lastly, in the decrypt state with KEY1. The resulting output block is used in the calculation of the plaintext, which is then recorded.

For the TCBC-I mode of operation, it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors, resulting in three output blocks which are then used in the calculation of the three plaintext values. The three input blocks are directly assigned the values of the three ciphertext values for each iteration. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

This test is run for each of the 64 ciphertext values. At the completion of the $64^{\text {th }}$ cycle, all results are verified for correctness.

This test, when applied to an IUT, verifies the initial permutation IP and the expansion matrix E via the decrypt operation, by presenting the full set of basis vectors to these components. Via the encrypt operation, this test also verifies the inverse permutation (IP ${ }^{1}$) as the basis vectors are recovered by presenting each basis vector to the inverse permutation IP^{-1}.

3.1.2.3 The Variable Key Known Answer Test for the Decryption Process

To implement the Variable Key Known Answer Test for the Decryption Process, the TMOVS supplies the IUT with 56 keys or, for the TCBC-I mode of operation, 56 key sets consisting of three keys each. The TMOVS also supplies initial values for the initialization vector values, if applicable.

During the initialization process, the ciphertext value(s) are initialized in one of two ways. If the IUT supports both encryption and decryption, the values resulting from the encryption performed in the Variable Key Known Answer Test for the Encryption Process will be used to initialize the ciphertext values. Otherwise, the TMOVS will supply the ciphertext values along with the information discussed in the previous paragraph. The initialization vector value(s) are set to zero for each test. All three keys for each round are initialized to a 56 -bit key basis vector which contains a " 1 " in the $\mathrm{i}^{\text {th }}$ significant position and " 0 "s in all remaining significant positions of the keys, i.e., KEY1=KEY2=KEY3. (NOTE -- the parity bits are not considered as significant bits. These parity bits may be " 1 "s or " 0 "s to maintain odd parity.)

For the TECB and TCBC modes of operation, the values of the ciphertext are used directly as the input blocks of data. The input blocks are processed through the DEA three times -- first in the decrypt state with KEY3, next in the encrypt state with KEY2, and lastly, in the decrypt state with KEY1. The resulting output blocks are used in the calculation of the plaintext values, which are then recorded.

For the interleaved configuration of the TCBC mode of operation (TCBC-I), it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors, resulting in three output blocks which are then used in the calculation of the three plaintext values. The three input blocks are directly assigned the values of the three corresponding ciphertext values for each iteration. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

This test is repeated for each of the 56 key basis vectors, allowing for every possible key basis vector to be tested. At the completion of the $56^{\text {th }}$ cycle, all results are verified for correctness.

This test verifies the right shifts in the key schedule via the DES decrypt operation as the basis vectors are recovered.

During the encrypt operation, a complete set of basis vectors is presented to the key permutation, PC1, thus verifying PC1. Since the key schedule consists of left shifts, a complete set of basis vectors is also presented to PC2 verifying PC2 as well.

3.1.2.4 The Permutation Operation Known Answer Test for the Decryption Process

To implement the Permutation Operation Known Answer Test for the Decryption Process, the TMOVS supplies the IUT with 32 key-data sets, consisting of an initial value for the three keys and values for the ciphertext. The TMOVS also supplies initial values for the initialization vector(s), if applicable. For IUTs supporting the TCBC-I mode of operation, three ciphertext values are included in the key-data sets, and three initialization vector values are supplied for each set. The values for the key and ciphertext are supplied in one of two ways. If the IUT performs both encryption and decryption, values for the key and ciphertext resulting from the encryption performed in the Permutation Operation Known Answer Test for the Encryption Process will be used. Otherwise, the key and ciphertext values will be supplied by the TMOVS. If applicable, the initialization vector will be set to zero for each test.

For the TECB and TCBC modes of operation, the values of the ciphertext are used directly as the input blocks of data. The input blocks are processed through the DEA three times -- first in the decrypt state with KEY3, next in the encrypt state with KEY2, and lastly, in the decrypt state with KEY1. The resulting output blocks are used in the calculation of the plaintext values, which are then recorded.

For the TCBC mode of operation supporting interleaving (TCBC-I), it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, three input blocks are processed simultaneously through the three DES processors, resulting in three output blocks which are then used in the calculation of the three plaintext values. The three input blocks are directly assigned the values of the three corresponding ciphertext values for each iteration. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

This test is repeated for each of the 32 key-data sets. At the completion of the $32^{\text {nd }}$ set, the results of each of the 32 tests are verified to be zero.

The 32 key sets used in this test present a complete set of basis vectors to the permutation operator P. By doing so, P is verified. This occurs when both the encrypt and decrypt operations are performed.

3.1.2.5 The Substitution Table Known Answer Test for the Decryption Process

To implement the Substitution Table Known Answer Test for the Decryption Process, the TMOVS supplies the IUT with 19 key-data sets consisting of an initial value for the three
keys and values for the ciphertext. The TMOVS also supplies initial values for the initialization vector, if applicable. For IUTs supporting the TCBC-I mode of operation, three ciphertext values are included in the key-data sets and three initialization vector values are supplied for each set. The values for the keys and the ciphertext value(s) are supplied in one of two ways. If the IUT performs both encryption and decryption, the values for the key and ciphertext resulting from the encryption performed in the Substitution Table Known Answer Test for the Encryption Process will be used. Otherwise, the key and ciphertext values will be supplied by the TMOVS. If applicable, the initialization vector will be set to zero for each test.

For the TECB and TCBC modes of operation, the values of the ciphertext are used directly as the input blocks of data. The input blocks are processed through the DEA three times -- first in the decrypt state with KEY3, next in the encrypt state with KEY2, and lastly, in the decrypt state with KEY1. The resulting output blocks are used in the calculation of the plaintext blocks, which are then recorded.

For the TCBC mode of operation supporting interleaving (TCBC-I), it is assumed that multiprocessing is possible, i.e., each block of input data is processed by three DES processors. Therefore, for interleaved modes of operation, three input blocks are processed simultaneously through the three DES processors, resulting in three output blocks which are then used in the calculation of the three plaintext values. The three input blocks are directly assigned the values of the three corresponding ciphertext values for each iteration. Note that the design of the TMOVS assumes that, for security reasons, an IUT is designed so that intermediate values resulting from the first two DES calls are never revealed.

This test is repeated for each of the 19 key-data sets allowing for the set of 19 key-data sets to be processed. At the completion of the $19^{\text {th }}$ set, all results are verified for correctness.

The set of 19 key-data sets used in this test result in every entry of all eight S-box substitution tables being used at least once during both the encrypt and decrypt operations. Thus, this test verifies the 64 entries in each of the eight substitution tables.

The Monte Carlo Test

The Monte Carlo Test is the second type of validation test required to validate IUTs. The Monte Carlo Test is based on the Monte-Carlo test discussed in Special Publication 500-20. It is designed to exercise the entire implementation of the TDEA, as opposed to testing only the individual components. The purpose of the Monte Carlo Test is to detect the presence of flaws in the IUT that were not detected with the controlled input of the Known Answer tests. Such flaws may include pointer problems, errors in the allocation of space, improper error handling, and incorrect behavior of the TDEA implementation when random values are introduced. The Monte Carlo Test does not guarantee ultimate reliability of the IUT that implements the TDEA (i.e., hardware failure, software corruption, etc.).

The TMOVS supplies the IUT with initial input values for the keys, the plaintext(s) (or ciphertext(s)), and, if applicable, initialization vector(s). The Monte Carlo Test is then performed (as described in the following paragraph), and the resulting ciphertext (or plaintext) values are recorded and compared to expected values. If an error is detected, the erroneous result is recorded, and the test terminates abnormally. Otherwise, the test continues. If the IUT's results are correct, the Monte Carlo Test for the IUT ends successfully.

Each Monte Carlo Test consists of four million cycles through the TDEA implemented in the IUT. These cycles are divided into four hundred groups of 10,000 iterations each. Each iteration consists of processing an input block through three operations of the DEA resulting in an output block. For IUTs of the encryption process, the three DES operations are encrypted with KEY1, decrypted with KEY2, and encrypted with KEY3. For IUTs of the decryption process, the three DES operations are decrypted with KEY3, encrypted with KEY2, and decrypted with KEY1. At the $10,000^{\text {th }}$ cycle in an iteration, new values are assigned to the variables needed for the next iteration. The results of each $10,000^{\text {th }}$ encryption or decryption cycle are recorded and evaluated as specified in the preceding paragraph.

4. BASIC PROTOCOL

4.1 Overview

Input and output messages used to convey information between the TMOVS and the IUT consist of specific fields. The format of these input and output messages is beyond the scope of this document, and the testing laboratories have the option to determine the specific formats of those messages. However, the results sent to NIST must include certain minimum information, which is specified in Section 4.4 Output Types.

A separate message should be created for each mode of operation supported by an IUT. The information should indicate the algorithm used (Triple DES), the mode of operation (TECB, TCBC, TCBC-I, TCFB-including feedback amounts, TCFB-P-including feedback amounts, TOFB, TOFB-I), the cryptographic process supported (encryption and/or decryption), the test being performed (one of the various Known Answer tests, or the Monte Carlo Tests), and the required data fields. The required data may consist of counts, keys, initialization vectors, and data representing plaintext or ciphertext. Every field in an output message should be clearly labeled to indicate its contents - this is especially important for NIST to be able to ensure that test results are complete.

4.1.1 Conventions

The following conventions should be used in the data portion of messages between the TMOVS and the IUT: (See Section 4.1.2 for these notations.)

1. Integers: integers should be unsigned and should be represented in decimal notation.
2. Hexadecimal strings: should consist of ASCII hexadecimal characters. The ASCII hexadecimal characters to be used should consist of the ASCII characters 0-9 and A-F (or a-f), which represent 4-bit binary values.
3. Characters: the characters to be represented are A-Z (or a-z), $0-9$, and underscore (_).

4.1.2 Message Data Types

The following data types should be used in messages between the TMOVS and the IUT:

1. Decimal integers: a decimal integer should have the form
ddd ... dd
where each "d" represents a decimal character (0-9); one or more characters should be present. The characters must be contiguous.
2. Hexadecimal strings: a hexadecimal string should have the form
hhh ... hh
where each " h " should represent an ASCII character 0-9 or A-F (or a-f). Each "h" represents a 4-bit binary value.
3. Characters: an ASCII character should have the form

c

where "c" represents an ASCII character A-Z (or a-z), 0-9, or underscore (_).

4.2 Message Contents

The information included in a message consists of the following:
Algorithm - Triple DES,
Mode - selections consist of TECB, TCBC, TCBC-I, TCFB-including feedback amounts, TCFB-P-including feedback amounts, TOFB, TOFB-I

Process - selections consist of ENCRYPT or DECRYPT,
Test - selections consist of:
VTEXT for Variable Plaintext/Ciphertext Known Answer Test
VKEY for Variable KEY Known Answer Test

INVPERM for Inverse Permutation Known Answer Test

INITPERM for Initial Permutation Known Answer Test
PERM for Permutation Operation Known Answer Test
SUB for Substitution Table Known Answer Test
MODES for Monte Carlo Test

Input/Output Data

The contents of the input/output data included in a message depend on the algorithm, mode, process, and test being performed. These different combinations of data have been organized into input types and output types. The input types are used by the TMOVS to supply data to the IUT for testing. The output types are used by the IUT to supply results from the tests to the TMOVS, and eventually to NIST.

4.3 Input Types

Twenty-five different combinations of input data are used by the TMOVS to support the various Known Answer tests and Monte Carlo tests.

4.3.1 Input Type 1

Input Type 1 consists of:
KEY and DATA
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3; and

DATA is a 16 character ASCII hexadecimal string representing plaintext if the encryption process is being tested, or ciphertext if the decryption process is being tested.

4.3.2 Input Type 2

Input Type 2 consists of:
KEY, IV, and DATA
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector; and DATA is 1 to 64 binary bits represented as an ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested.

4.3.3 Input Type 3

Input Type 3 consists of:

$$
\mathrm{KEY}, n, \mathrm{DATA}_{1}, \mathrm{DATA}_{2}, \ldots, \mathrm{DATA}_{n}
$$

where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;
n is an integer which indicates the number of ciphertext (C) values to follow; and
each DATA_{n} is 1 to 64 binary bits represented as a 16 character ASCII hexadecimal string. This field should provide plaintext if the encryption process is being tested, or ciphertext if the decryption process is being tested.

4.3.4 Input Type 4

Input Type 4 consists of:
KEY
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3.

4.3.5 Input Type 5

Input Type 5 consists of:
KEY, IV, n, TEXT $_{1}$, TEXT $_{2}, \ldots$, TEXT $_{n}$
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector; n is an integer which indicates the number of TEXT values to follow; and each TEXT_{n} is 1 to 64 binary bits represented as an ASCII hexadecimal string. TEXT represents P, C, or RESULT.

4.3.6 Input Type 6

Input Type 6 consists of:
KEY and IV
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3; and

IV is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector.

4.3.7 Input Type 7

Input Type 7 consists of

$$
\mathrm{P}, \mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{32}
$$

where P is 1 to 64 binary bits represented as a 16 character ASCII hexadecimal string; and
each KEY_{i}, where $\mathrm{i}=1$ to 32 , is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3.

4.3.8 Input Type 8

Input Type 8 consists of:
TEXT,IV, KEY $_{1}$, KEY $_{2}, \ldots$, KEY $_{32}$
where TEXT is 1 to 64 binary bits represented as an ASCII hexadecimal string. (NOTE -- TEXT may be referred to as plaintext or text.);

IV is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector; and each KEY_{i}, where $\mathrm{i}=1$ to 32 , is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3.

4.3.9 Input Type 9

Input Type 9 supplies n key/input block pairs. It consists of:
$n, \operatorname{PAIR}_{1}, \mathrm{PAIR}_{2}, \ldots, \mathrm{PAIR}_{n}$
In this input type, the integer n indicates the number of KEY values to follow. Each PAIR_{i} consists of:

KEY_{i} and TEXT_{i}

where each KEY_{i}, where $\mathrm{i}=1$ to n, is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3; and
each TEXT_{i}, for $i=1$ to n, is a 16 character ASCII hexadecimal string representing either plaintext or ciphertext.

4.3.10 Input Type 10

Input Type 10 consists of:

$$
n, \mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{n}
$$

where n is an integer which indicates the number of KEY values to follow; and
each KEY_{i}, where $i=1$ to n, is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

4.3.11 Input Type 11

Input Type 11 consists of:
INITVAL, n, PAIR $_{1}$, PAIR $_{2}, \ldots, \operatorname{PAIR}_{n}$
where INITVAL is a 16 character ASCII hexadecimal string representing either the 64 -bit IV or the TEXT, depending on the mode of operation implemented by the IUT. (NOTE -- The TEXT may be referred to as plaintext, ciphertext, or text.);
n is an integer, which indicates the number of KEY/INPUT PAIRs to follow.
Each PAIR_{i} consists of:
KEY_{i} and I_{i}
where each KEY_{i}, where $i=1$ to n, is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3; and
each I_{i} is a 16 character ASCII hexadecimal string representing either the 64-bit IV, P or C, depending on the mode of operation implemented.

4.3.12 Input Type 12

Input Type 12 consists of:
INITVAL, $n, \mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{n}$
where INITVAL is a 16 character ASCII hexadecimal string representing either the 64-bit IV or the 64-bit TEXT depending on the mode of operation implemented by the IUT. (NOTE -- The TEXT may be referred to as ciphertext.);
n is an integer which indicates the number of KEYS to follow; and
each KEY_{i}, where $i=1$ to n, is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3.

4.3.13 Input Type 13

Input Type 13 consists of:
KEY, IV1, IV2, IV3, DATA
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV1 is a 16 character ASCII hexadecimal string representing the 64 -bit initialization vector;
IV2 is assigned the value of IV1 $+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA;
and
DATA is 1 to 64 binary bits represented as an ASCII hexadecimal string representing plaintext if the encrypt process is being tested, ciphertext if the decrypt process is being tested, or TEXT for TCFB-P mode. DATA may represent the value of DATA1, DATA2 and DATA3 for Interleaved modes of operation.

4.3.14 Input Type 14

Input Type 14 consists of:
KEY, IV1, IV2, IV3
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV1 is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector;
IV2 is assigned the value of IV1 $+\mathrm{R}_{1} \bmod 2^{64}$, where $\mathrm{R}_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA;

4.3.15 Input Type 15

Input Type 15 consists of:
KEY, IV1, IV2, IV3, n, TEXT $_{1}, \ldots$, TEXT $_{n}$, TEXT $_{1}, \ldots$, TEXT $_{n}$, TEXT3 $_{1}, \ldots$, TEXT3 $_{n}$
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV1 is a 16 character ASCII hexadecimal string representing the 64 -bit initialization vector;
IV 2 is assigned the value of IV1 $+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA;
n is an integer, which indicates the number of TEXT1s, TEXT2s, and TEXT3s to follow;
each TEXT1 1_{n} is 1 to 64 binary bits represented as an ASCII hexadecimal string. TEXT1 represents P, C, or RESULT;
each TEXT2 ${ }_{n}$ is 1 to 64 binary bits represented as an ASCII hexadecimal string. TEXT2 represents P, C, or RESULT; and
each TEXT3 $_{n}$ is 1 to 64 binary bits represented as an ASCII hexadecimal string. TEXT3 represents P, C, or RESULT.

4.3.16 Input Type 16

Input Type 16 consists of:
IV1, IV2, IV3, n, KEY $_{1}$, KEY $_{2}, \ldots$, KEY $_{n}$
where IV1 is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector;
IV2 is assigned the value of IV1 $+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAAA;
n is an integer which indicates the number of KEY values to follow; and
each KEY_{i}, where $i=1$ to n, is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

4.3.17 Input Type 17

Input Type 17 consists of:
IV1, IV2, IV3, n, GROUP $_{1}$, GROUP $_{2}, \ldots$, GROUP $_{n}$
where IV1 is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector;

IV2 is assigned the value of IV1 $+\mathrm{R}_{1} \bmod 2^{64}$, where $\mathrm{R}_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA;
n is an integer, which indicates the number of KEY/INPUT GROUPs to follow.
Each GROUP_{i} consists of:
KEY_{i}, TEXT $_{i}$, TEXT2 $_{i}$, and TEXT3 ${ }_{i}$
where each KEY_{i}, where $i=1$ to n, is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3; and
each TEXT 1_{i}, TEXT $_{i}$, and TEXT3 ${ }_{i}$ is a 16 character ASCII hexadecimal string representing the 64-bit C1, C2, and C3 respectively.

4.3.18 Input Type 18

Input Type 18 consists of
TEXT, IV1, IV2, IV3, KEY $_{1}$, KEY $_{2}, \ldots$, KEY $_{32}$
Where TEXT is 1 to 64 binary bits represented as an ASCII hexadecimal string. TEXT may represent P or TEXT depending on the mode of operation being implemented;

IV1 is a 16 character ASCII hexadecimal string representing the 64 -bit initialization vector;
IV2 is assigned the value of $I V 1+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA; and
each KEY_{i}, where $\mathrm{i}=1$ to 32 , is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3.

4.3.19 Input Type 19

Input Type 19 consists of:
IV1, IV2, IV3, n, PAIR $_{1}, \mathrm{PAIR}_{2}, \ldots, \mathrm{PAIR}_{n}$
where IV1 is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector; IV2 is assigned the value of IV1 $+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;

IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAAA;
n is an integer which indicates the number of KEY/INPUT PAIRs to follow.
Each PAIR_{i} consists of:
KEY_{i} and TEXT_{i}
where each KEY_{i}, where $i=1$ to n, is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3; and
each TEXT_{i} is a 16 character ASCII hexadecimal string. TEXT may represent the 64-bit TEXT1, TEXT2, and TEXT3 values, or the IV1 value depending on the mode of operation implemented.

4.3.20 Input Type 20

Input Type 20 consists of:
KEY1, KEY2, KEY3, DATA
where KEY1, KEY2, and KEY3 are represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity; and

DATA is a 16 character ASCII hexadecimal string representing plaintext if the encryption process is being tested, or ciphertext if the decryption process is being tested.

4.3.21 Input Type 21

Input Type 21 consists of:
KEY1, KEY2, KEY3, IV, and DATA
where KEY1, KEY2, and KEY3 are represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity.;

IV is a 16 character ASCII hexadecimal string representing the 64 -bit initialization vector; and DATA is 1 to 64 binary bits represented as an ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested.

4.3.22 Input Type 22

Input Type 22 consists of:

KEY1, KEY2, KEY3, IV1, IV2, IV3, TEXT1, TEXT2, and TEXT3
where KEY1, KEY2, and KEY3 are represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity.;

IV1 is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector;
IV2 is assigned the value of $I V 1+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA;
TEXT1 is 64 binary bits represented as a 16 character ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested;

TEXT2 is 64 binary bits represented as a 16 character ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested; and

TEXT3 is 1 to 64 binary bits represented as an ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested.

4.3.23 Input Type 23

Input Type 23 consists of:
KEY, IV1, IV2, IV3, n, TEXT $_{1}, \ldots$, TEXT $_{n}$
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV1 is a 16 character ASCII hexadecimal string representing the 64 -bit initialization vector;
IV2 is assigned the value of $I V 1+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAAA;
n is an integer which indicates the number of TEXT values to follow; and each TEXT_{n} is 1 to 64 binary bits represented as a 16 character ASCII hexadecimal string. TEXT1 represents P, C, or RESULT;

4.3.24 Input Type 24

Input Type 24 consists of:

KEY1, KEY2, KEY3, IV1, IV2, IV3, and TEXT
where KEY1, KEY2, and KEY3 are represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity.;

IV1 is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector;
IV2 is assigned the value of $I V 1+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA; and
TEXT is 1 to 64 binary bits represented as an ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested.

4.3.25 Input Type 25

Input Type 25 consists of:
TEXT, n, GROUP $_{1}$, GROUP $_{2}, \ldots$, GROUP $_{n}$
where TEXT is 1 to 64 binary bits represented as a 16 character ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested;
n is an integer which indicates the number of KEY/IV1/IV2/IV3 groups to follow.
Each GROUP_{i} consists of:
$\mathrm{KEY}_{i}, \mathrm{IV}_{i}, \mathrm{IV} 2_{i}$, and IV_{i}
where each KEY_{i}, where $i=1$ to n, is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV 1_{i} is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector;
$\mathrm{IV} 2_{i}$ is assigned the value of $\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64}$, where $\mathrm{R}_{1}=5555555555555555$; and
$\mathrm{IV} 3_{i}$ is assigned the value of $\mathrm{IV} 1+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA.

4.4 Output Types

Eight different combinations of output data are used by the TMOVS to support the various Known Answer tests and Monte Carlo tests.

4.4.1 Output Type 1

Output Type 1 consists of:
COUNT, KEY, DATA, and RESULT
where COUNT is an integer between 1 and 64 , i.e., $0<$ COUNT $<=64$, representing the output line;

KEY should be represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

DATA is a 16 character hexadecimal string representing plaintext if the encrypt process is being tested or ciphertext if the decrypt process is being tested; and

RESULT is a 16 character hexadecimal string indicating the resulting value. Depending on the process of the IUT being tested, the resulting value represents ciphertext (if encrypting) or plaintext (if decrypting).

4.4.2 Output Type 2

Output Type 2 consists of:

COUNT, KEY, CV, DATA, and RESULT

where COUNT is an integer between 1 and 64, i.e., $0<$ COUNT $<=64$, representing the output line;
where KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES keys should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

CV is a 16 character ASCII hexadecimal string;
DATA is 1-64 binary bits represented as an ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested.; and

RESULT is 1-64 binary bits represented as an ASCII hexadecimal string indicating the resulting value. Depending on the process of the IUT being tested, the resulting value may be ciphertext (if encrypting) or plaintext (if decrypting).

4.4.3 Output Type 3

Output Type 3 consists of:
where COUNT is an integer between 1 and 64, i.e., $0<$ COUNT $<=64$, representing the output line;

KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV1 is a 16 character ASCII hexadecimal string representing the 64 -bit initialization vector;
IV2 is assigned the value of IV1 $+R_{1} \bmod 2^{64}$, where $R_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA;
DATA1, DATA2, and DATA3 are 1-64 binary bits represented as an ASCII hexadecimal strings representing values of plaintext P1, P2, and P3 or input blocks I1, I2, and I3 respectively, if the encrypt process is being tested, or values of ciphertext for $\mathrm{C} 1, \mathrm{C} 2$, and C 3 if the decrypt process is being tested;

RESULT1, RESULT2, and RESULT3 are 1-64 binary bits represented as an ASCII hexadecimal strings indicating the resulting values corresponding to either $\mathrm{C} 1, \mathrm{C} 2$, and C 3 or $\mathrm{P} 1, \mathrm{P} 2$, and P 3 . Depending on the process of the IUT being tested, the resulting value may be ciphertext (if encrypting) or plaintext (if decrypting).

4.4.4 Output Type 4

Output Type 4 consists of:
COUNT, KEY1, KEY2, KEY3, CV1, CV2, CV3, DATA1, DATA2, DATA3, RESULT1, RESULT2, RESULT3
where COUNT is an integer between 1 and 64 , i.e., $0<$ COUNT $<=64$, representing the output line;
where KEY1, KEY2, and KEY3 is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES keys should be presented in odd parity.;

CV1 is a 16 character ASCII hexadecimal string representing the 64-bit initialization vector;
CV2 is assigned the value of IV1 $+\mathrm{R}_{1} \bmod 2^{64}$, where $\mathrm{R}_{1}=5555555555555555$;
CV 3 is assigned the value of IV $1+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA;

DATA1, DATA2, and DATA3 are 16 character hexadecimal strings representing values of plaintext for $\mathrm{P} 1, \mathrm{P} 2$, and P 3 respectively, if the encrypt process is being tested, or values of ciphertext for $\mathrm{C} 1, \mathrm{C} 2$, and C 3 if the decrypt process is being tested;

RESULT1, RESULT2, and RESULT3 are 16 character hexadecimal strings indicating the resulting values corresponding to either $\mathrm{C} 1, \mathrm{C} 2$, and C 3 or P1, P2, and P3. Depending on the process of the IUT being tested, the resulting value may be ciphertext (if encrypting) or plaintext (if decrypting).

4.4.5 Output Type 5

Output Type 5 consists of:

COUNT, KEY1, KEY2, KEY3, DATA, and RESULT

where COUNT is an integer between 1 and 400, i.e., $0<$ COUNT $<=400$, representing the output line;

KEY1, KEY2, and KEY3 are represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES keys should be presented in odd parity.;

DATA is a 16 character hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested; and

RESULT is a 16 character hexadecimal string indicating the resulting value. Depending on the process of the IUT being tested, the resulting value represents ciphertext (if encrypting) or plaintext (if decrypting).

4.4.6 Output Type 6

Output Type 6 consists of:

COUNT, KEY1, KEY2, KEY3, CV, DATA, and RESULT

where COUNT is an integer between 1 and 400, i.e., $0<$ COUNT <= 400, representing the output line;

KEY1, KEY2, and KEY3 are represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES keys should be presented in odd parity.;

CV is a 16 character ASCII hexadecimal string representing IV or I depending on the mode implemented;

DATA is 1-64 binary bits represented as an ASCII hexadecimal string representing plaintext if the encrypt process is being tested, or ciphertext if the decrypt process is being tested; and

RESULT is 1-64 binary bits represented as an ASCII hexadecimal string indicating the resulting value. Depending on the process of the IUT being tested, the resulting value should represent ciphertext (if encrypting) or plaintext (if decrypting).

4.4.7 Output Type 7

Output Type 7 consists of:

COUNT, KEY, IV1, IV2, IV3, DATA, RESULT1, RESULT2, RESULT3

where COUNT is an integer between 1 and 64, i.e., $0<$ COUNT $<=64$, representing the output line;

KEY is represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES key should be presented in odd parity. KEY represents the value of KEY1, KEY2, and KEY3;

IV1 is a 16 character ASCII hexadecimal string representing the 64 -bit initialization vector;
IV2 is assigned the value of IV1 $+\mathrm{R}_{1} \bmod 2^{64}$, where $\mathrm{R}_{1}=5555555555555555$;
IV3 is assigned the value of IV1 $+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAAA;
DATA is 1-64 binary bits represented as an ASCII hexadecimal string representing the value of the plaintext if the encrypt process is being tested, or the value of the ciphertext if the decrypt process is being tested; and

RESULT1, RESULT2, and RESULT3 is 1-64 binary bits represented as an ASCII hexadecimal string indicating the resulting values, which may be ciphertext (if encrypting), or plaintext (if decrypting).

4.4.8 Output Type 8

Output Type 8 consists of:
COUNT, KEY1, KEY2, KEY3, I1, I2, I3, DATA, and RESULT
where COUNT is an integer between 1 and 400, i.e., $0<$ COUNT $<=400$, representing the output line;

KEY1, KEY2, and KEY3 are represented as 64 bits in hexadecimal notation (i.e., 4 bits per hexadecimal character). The 8 parity bits should be present but ignored, yielding 56 significant bits. For consistency purposes, the DES keys should be presented in odd parity;

I1 is a 16 character ASCII hexadecimal string representing IV or I;
I2 is assigned the value of $\mathrm{I} 1+\mathrm{R}_{1} \bmod 2^{64}$, where $\mathrm{R}_{1}=5555555555555555$;

I3 is assigned the value of $\mathrm{I} 1+\mathrm{R}_{2} \bmod 2^{64}$, where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA;
DATA is 1-64 binary bits represented as an ASCII hexadecimal string representing plaintext if the encrypt process is being tested or ciphertext if the decrypt process is being tested; and

RESULT is 1-64 binary bits represented as an ASCII hexadecimal string indicating the resulting value. Depending on the process of the IUT being tested, the resulting value should represent ciphertext (if encrypting) or plaintext (if decrypting).

5. TESTS REQUIRED TO VALIDATE AN IMPLEMENTATION OF THE TRIPLE DES ALGORITHM

The validation of IUTs of the Triple DES algorithm (TDEA) should require the successful completion of an applicable set of Known Answer tests and the appropriate Monte Carlo tests. The tests required for validation of an IUT should be determined by several factors. These include the mode(s) of operation supported (TECB, TCBC, TCBC-I, TCFB, TCFB-P, TOFB, TOFB-I), the keying option used, and the allowed cryptographic processes (encryption, decryption, both).

A separate set of Known Answer tests has been designed for use with each of the seven modes of TDES. Within these sets of tests are separate subsets of tests corresponding to the encryption and decryption processes. If an IUT implements multiple modes of operation, the set of Known Answer tests corresponding to each supported mode of operation should be tested.

The Monte Carlo tests have been designed for use with each of the seven modes of TDES. For the TECB, TCBC, TCBC-I, TCFB, and TCFB-P modes of operation, there are two tests associated with each: one to be used for IUTs allowing the encryption process, and the other to be used for IUTs allowing the decryption process. If both the encryption and decryption processes are allowed by an IUT, both tests are required. The TOFB and TOFB-I modes of operation only require one Monte Carlo test, which is designed for use with both the encryption and decryption processes of an IUT. For example, if an IUT implements the TCBC mode of operation in both the encryption and decryption processes, the Monte Carlo Test for the encryption process and the Monte Carlo Test for the decryption process of the TCBC mode of operation should be successfully completed to validate the IUT. If an IUT implements both the encryption and decryption processes of the TCFB-P mode of operation, the Monte Carlo Test for the encryption process and the Monte Carlo Test for the decryption process of the TCFB-P mode of operation should be successfully completed to validate the IUT. If an IUT implements both the encryption and decryption processes of the TOFB mode of operation, the Monte Carlo Test for the TOFB mode of operation should be successfully completed to validate the IUT.

If an IUT supports more than one mode of operation, the Monte Carlo Test corresponding to each supported mode should be performed successfully. For example, if an IUT implements the TECB and TCBC modes of operation in the encryption process, the Monte Carlo Test for the encryption process of both the TECB and the TCBC modes of operation should be successfully completed to validate the IUT.

If an IUT supports the 3-key keying option, where KEY1, KEY2 and KEY3 are independent, the Monte Carlo Test should be successfully completed three times - once where the three keys are independent, once where KEY1 and KEY2 are independent and KEY3 $=$ KEY1, and once where KEY1 $=$ KEY2 $=$ KEY3 - to validate the IUT. If an IUT supports the 2-key keying option, where KEY1 and KEY2 are independent and KEY3 = KEY1, the Monte Carlo Test should be successfully completed two times - once where KEY1 and KEY2 are independent and KEY3 = KEY1, and once where KEY1 = KEY2 = KEY3 - to validate the IUT. If an IUT only supports the 1-key keying option, where KEY1=KEY2=KEY3, the Monte Carlo Test should be successfully completed once with all the keys being equal to validate the IUT.

The tests required to successfully validate IUTs are detailed in the following sections. These sections are categorized by mode of operation. Within each mode of operation, the tests are divided into tests to use with the encryption process and tests to use with the decryption process.

5.1 TDEA Electronic Codebook (TECB) Mode

The IUTs which implement the TDES Electronic Codebook (TECB) mode should be validated by the successful completion of a series of Known Answer tests and Monte Carlo tests corresponding to the cryptographic processes allowed by the IUT.

5.1.1 Encryption Process

The process of validating an IUT which implements the TECB mode of operation for the encryption process should involve the successful completion of the following six tests:

1. The Variable Plaintext Known Answer Test - TECB mode
2. The Inverse Permutation Known Answer Test - TECB mode
3. The Variable Key Known Answer Test for the Encryption Process - TECB mode
4. The Permutation Operation Known Answer Test for the Encryption Process - TECB mode
5. The Substitution Table Known Answer Test for the Encryption Process - TECB mode
6. The Monte Carlo Test for the Encryption Process - TECB mode

An explanation of the tests follows.

5.1.1.1 The Variable Plaintext Known Answer Test - TECB Mode

Table 1 The Variable Plaintext Known Answer Test - TECB Mode

Table 1 illustrates the Variable Plaintext Known Answer Test for the TECB mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit plaintext P_{1} to the basis vector containing a" 1 " in the first bit position and " 0 " in the following 63 positions, i.e., $\mathrm{P}_{1 \text { bin }}=1000000000000000$ 00 . The equivalent of this value in hexadecimal notation is 8000000000000000 .
c. Forwards this information to the IUT using Input Type 1.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :
a. Set the input block I_{i} equal to the value of P_{i}.
b. Process I_{i} through the three DEA stages resulting in ciphertext C_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number i, KEY (where KEY represents the value of KEY1, KEY2, and KEY3), P_{i}, and the resulting C_{i} to the TMOVS as specified in Output Type 1.
d. Retain C_{i} for use with the Inverse Permutation Known Answer Test for the TECB Mode (Section 5.1.1.2), and, if the IUT supports the decryption process, for use with the Variable Ciphertext Known Answer Test for the TECB Mode (Section 5.1.2.1).
e. Assign a new value to $\mathrm{P}_{\mathrm{i}+1}$ by setting it equal to the value of a basis vector with a " 1 " bit in position $\mathrm{i}+1$, where $\mathrm{i}+1=2, \ldots, 64$.

NOTE -- This continues until every possible basis vector has been represented by the P, i.e., 64 times. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values found in Table A.1.

5.1.1.2 The Inverse Permutation Known Answer Test - TECB Mode

Table 2 The Inverse Permutation Known Answer Test - TECB Mode

Table 2 illustrates the Inverse Permutation Known Answer Test for the TECB mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit plaintext P_{i} (where $\mathrm{i}=1 . .64$) to the C_{i} results obtained from the Variable Plaintext Known Answer Test.
c. Forwards this information to the IUT using Input Type 3.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :
a. Set the input block I_{i} equal to the value of P_{i}.
b. Process I_{i} through the three DEA stages resulting in ciphertext C_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), P_{i}, and the resulting C_{i} to the TMOVS as specified in Output Type 1.
d. Assign a new value to $\mathrm{P}_{\mathrm{i}+1}$ by setting it equal to the corresponding output from the TMOVS.

NOTE -- The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values. The C values should be the set of basis vectors.

5.1.1.3 The Variable Key Known Answer Test for the Encryption Process TECB Mode

Table 3 The Variable Key Known Answer Test for the Encryption Process - TECB Mode

Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$), $\mathrm{P}, \mathrm{C}_{\mathrm{i}}$
$K E Y 1_{i+1}=K E Y 2_{\mathrm{i}+1}=\mathrm{KEY} 3_{\mathrm{i}+1}=$ vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position $i+1$. Each parity bit may have the value " 1 " or " " 0 " to make the KEY odd parity.
\}
\}

TMOVS: Compare results of the 56 encryptions with known answers.
Use Table A.2.

As summarized in Table 3, the Variable Key Known Answer Test for the TECB Encryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}$, and KEY_{1} to contain " 0 " in every significant bit except for a "1" in the first position, i.e., the 64-bit KEY1 $1_{1 \text { bin }}=$ $K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001$ 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or " 1 " to get odd parity.
b. Initializes the 64-bit plaintext P to the value of 0 , i.e., $P_{\text {hex }}=00000000000000$ 00.
c. Forwards this information to the IUT using Input Type 1.
2. The IUT should perform the following for $\mathrm{i}=1$ to 56 :

NOTE -- 56 is the number of significant bits in a TDES key.
a. Set the input block I equal to the value of P.
b. Using the corresponding $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$ parameters, process I through the three DEA stages resulting in ciphertext C_{i}. This involves processing I through the DEA stage DEA_{1} in the encrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{3} in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY}_{\mathrm{i}}$, $K E Y 2_{i}, \mathrm{KEY}_{\mathrm{i}}$), P , and the resulting C_{i} to the TMOVS as specified in Output Type 1.
d. If the IUT supports the decryption process, retain C_{i} for use with the Variable Key Known Answer Test for the Decryption Process for the TECB Mode (Section 5.1.2.3).
e. Set $\mathrm{KEY}_{i+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$ equal to the vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position $\mathrm{i}+1$. The parity bits may contain " 1 " or " 0 " to make odd parity.

NOTE -- The above processing continues until every significant basis vector has been represented by the KEY parameter. The output from the IUT for this test should consist of 56 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values found in Table A.2.

5.1.1.4 Permutation Operation Known Answer Test for the Encryption Process - TECB Mode

Table 4 The Permutation Operation Known Answer Test for the Encryption Process TECB Mode

Table 4 illustrates the Permutation Operation Known Answer Test for the TECB Encryption Process.

1. The TMOVS:
a. Initializes the KEY1, KEY2, and KEY3 variables with the 32 constant KEY values from Table A.3.
b. Initializes the plaintext P to the value of 0, i.e., $\mathrm{P}_{\text {hex }}=0000000000000000$.
c. Forwards this information to the IUT using Input Type 7.
2. The IUT should perform the following for $\mathrm{i}=1$ to 32 :
a. Set the input block I equal to the value of P .
b. Using the corresponding $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ values, process I through the three DEA stages resulting in ciphertext C_{i}. This involves processing I through the DEA stage DEA_{1} in the encrypt state using $\mathrm{KEY} 1_{i}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{3} in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting ciphertext C_{i}.
c. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, KEY3), P, and the resulting C_{i} to the TMOVS as specified in Output Type 1.
d. If the IUT supports the decryption process, retain C_{i} for use with the Permutation Operation Known Answer Test for the Decryption Process for the TECB mode (Section 5.1.2.4).
e. Set $K E Y 1_{i+1}, K E Y 2_{i+1}$, and $K E Y 3_{i+1}$ equal to the next key supplied by the TMOVS.

NOTE-- The above processing should continue until all 32 KEY values are processed. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values found in Table A.3.

5.1.1.5 Substitution Table Known Answer Test for the Encryption Process TECB Mode

Table 5 The Substitution Table Known Answer Test for the Encryption Process TECB Mode

TMOVS:	Initialize Send	$\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=19 \mathrm{KEY}$ values in Table A. 4 $\mathrm{P}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=19$ corresponding P values in Table A. 4 $\mathrm{KEY}_{1}, \mathrm{P}_{1}, \mathrm{KEY}_{2}, \mathrm{P}_{2}, \ldots, \mathrm{KEY}_{19}, \mathrm{P}_{19}$ (Since all three keys are the same, these key values represent the values of KEY1, KEY2, and KEY3.)
IUT:	$\text { FOR } \mathrm{i}=1 \text { to } 19$	
	Perform Triple DES:	$\mathrm{I}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}}$ I_{i} is read into TDEA and is encrypted by DEA_{1} using KEY 1_{i}, resulting in TEMP1 TEMP1 is decrypted by DEA_{2} using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in TEMP2 TEMP2 is encrypted by DEA_{3} using KEY_{3}, resulting in C_{i}
		Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing KEY $1_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$), $\mathrm{P}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}$ $K E Y 1_{i+1}=K E Y 2_{i+1}=\operatorname{KEY}_{i+1}=$ KEY $_{i+1}$ from TMOVS $P_{i+1}=P_{i+1}$ from TMOVS
	\}	
TMOVS:	Compare results from each	loop with known answers. Use Table A.4.

As summarized in Table 5, the Substitution Table Known Answer Test for the TECB Encryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY-plaintext (KEY-P) pairs with the 19 constant KEY-P values from Table A.4. The KEY value indicates the value of KEY1, KEY2, and KEY3, i.e., $\mathrm{KEY} 1=\mathrm{KEY} 2=\mathrm{KEY} 3$.
b. Forwards this information to the IUT using Input Type 9 .
2. The IUT should perform the following for $\mathrm{i}=1$ to 19 :
a. Set the input block I_{i} equal to the value of P_{i}.
b. Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$ values, process I_{i} through the three DEA stages resulting in ciphertext C_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 1_{i}, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, KEY3), P_{i}, and the resulting C_{i} to the TMOVS as specified in Output Type 1.
d. If the IUT supports the decryption process, retain C_{i} for use with the Substitution Table Known Answer Test for the Decryption Process for the TECB mode (Section 5.1.2.5).
e. Set $\mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$ equal to the $\mathrm{KEY}_{\mathrm{i}+1}$ supplied by the TMOVS.
f. Set P_{i+1} equal to the corresponding P_{i+1} value supplied by the TMOVS.

NOTE-- The above processing should continue until all 19 KEY-P pairs are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values found in Table A.4.

5.1.1.6 Monte Carlo Test for the Encryption Process - TECB Mode

Table 6 The Monte Carlo Test for the Encryption Process - TECB Mode

$$
\begin{aligned}
& \text { If }\left(\mathrm{KEY}_{1}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}\right) \text { or }\left(\mathrm{KEY} 1_{\mathrm{i}} \text { and } \mathrm{KEY} 2_{\mathrm{i}}\right. \text { are } \\
& \text { independent and } \mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}} \text {), } \\
& \mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{j}} \\
& \text { else } \\
& \mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{j}-2} \\
& \mathrm{P}_{0}=\mathrm{C}_{\mathrm{j}} \\
& \text { \} } \\
& \text { TMOVS: Check IUT's output for correctness. }
\end{aligned}
$$

As summarized in Table 6, the Monte Carlo Test for the TECB Encryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3, and the plaintext P variables. The P and KEYs consist of 64 bits.
b. Forwards this information to the IUT using Input Type 20.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. Record the current values of the output loop number i, KEY1 $1_{i}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and P_{0}.
b. Perform the following for $\mathrm{j}=0$ through 9999:
1) Set the input block I_{j} equal to the value of P_{j}.
2) Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{i}$ and KEY_{i} values, process I_{j} through the three DEA stages resulting in ciphertext C_{j}. This involves processing I_{j} through the DEA stage DEA_{1} in the encrypt state using $K E Y 1_{i}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the decrypt state using $K E Y 2_{i}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{3} in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in ciphertext C_{j}.
3) Prepare for loop $j+1$ by assigning P_{j+1} with the current value of C_{j}.
c. \quad Record C_{j}.
d. Forward all recorded information for this loop, as specified in Output Type 5, to the TMOVS.
e. Assign new values to the KEY parameters, KEY1, KEY2, and KEY3 in preparation for the next outer loop. Note $\mathrm{j}=9999$.

The new $\mathrm{KEY} 1_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY} 1_{\mathrm{i}}$ with the C_{j}.

The new $\mathrm{KEY} 2_{i+1}$ calculation is based on the values of the keys. If $\mathrm{KEY} 1_{i}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY} 3_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}$, or $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$ are independent, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current KEY_{2} with the $\mathrm{C}_{\mathrm{j}-1}$. If $\mathrm{KEY} 1_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY}_{2}{ }_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 2_{i}$ with the C_{j}.

The new $\mathrm{KEY} 3_{\mathrm{i}+1}$ calculation is also based on the values of the keys. If $\mathrm{KEY} 1_{\mathrm{i}}$, $\mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$ are independent, the new $\mathrm{KEY} 3_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current KEY_{3} with the $\mathrm{C}_{\mathrm{j}-2}$. If KEY_{1} and $\mathrm{KEY}_{\mathrm{i}}$ are independent and $\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}$, or if $\mathrm{KEY} 1_{\mathrm{i}}=\mathrm{KEY} 2_{\mathrm{i}}=\mathrm{KEY} 3_{\mathrm{i}}$, the new $\mathrm{KEY} 3_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 3_{i}$ with the C_{j}.
f. Assign a new value to P in preparation for the next output loop. P_{0} should be assigned the value of the current C_{j}. Note $\mathrm{j}=9999$.

NOTE -- the new P should be denoted as P_{0} to be used for the first pass through the inner loop when $\mathrm{j}=0$.
NOTE-- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 5.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values.

5.1.2 Decryption Process

The process of validating an IUT which implements the TECB mode of operation in the decryption process should involve the successful completion of the following six tests:

1. The Variable Ciphertext Known Answer Test - TECB mode
2. The Initial Permutation Known Answer Test - TECB mode
3. The Variable Key Known Answer Test for the Decryption Process- TECB mode
4. The Permutation Operation Known Answer Test for the Decryption Process- TECB mode
5. The Substitution Table Known Answer Test for the Decryption Process - TECB mode
6. The Monte Carlo Test for the Decryption Process- TECB mode

An explanation of the tests follows.

5.1.2.1 The Variable Ciphertext Known Answer Test - TECB Mode

Table 7 The Variable Ciphertext Known Answer Tests - TECB Mode
TMOVS: Initialize KEYs: KEY1=KEY2=KEY3=0101010101010101 (odd parity set)
If encryption is supported by IUT:
Send KEY (representing KEY1, KEY2, and KEY3)
If encryption is not supported by IUT:
Initialize C_{i} (where $\mathrm{i}=1 . .64$) $=64 \mathrm{C}$ values in Table A. 1
Send KEY (representing KEY1, KEY2, and KEY3), $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{64}$
IUT: If encryption is supported by IUT:
Initialize $\mathrm{C}_{1}=$ first value from output of Variable Plaintext Known Answer Test.

Otherwise, use the first value received from the TMOVS.
FOR $\mathrm{i}=1$ to 64
\{

	$I_{i}=C_{i}$ Perform Triple DES:
I_{i} is read into TDEA and is decrypted by DEA 33 using KEY3,	
resulting in TEMP1	
TEMP1 is encrypted by DEA $_{2}$ using KEY2, resulting in	
TEMP2	
TEMP2 is decrypted by DEA	

Send i, KEY (representing KEY1, KEY2, and KEY3), $\mathrm{C}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$
If encryption is supported:
$\mathrm{C}_{\mathrm{i}+1}=$ corresponding $\mathrm{C}_{\mathrm{i}+1}$ from output of Variable Plaintext Known Answer Test
else
$\mathrm{C}_{\mathrm{i}+1}=$ the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value from TMOVS

\}

TMOVS: Compare results from each loop with known answers. Should be the set of basis vectors.

Table 7 illustrates the Variable Ciphertext Known Answer test for the TECB mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. If the IUT does not support encryption, the 64 constant ciphertext values from Table A. 1 are initialized.
c. If encryption is supported by the IUT, the KEYs are forwarded to the IUT using Input Type 4. If encryption is not supported by the IUT, forward the KEYs and 64 C values to the IUT using Input Type 3.
2. The IUT should:
a. If encryption is supported, initialize the C value with the first C value retained from the Variable Plaintext Known Answer Test for the TECB Mode (Section 5.1.1.1). Otherwise, use the first value received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ through 64 :
1) Set the input block I_{i} equal to the value of C_{i}.
2) Process I_{i} through the three DEA stages resulting in plaintext P_{i}. This involves processing I_{i} through the DEA stage DEA_{3} in the decrypt state using KEY3, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using KEY1, resulting plaintext P_{i}.
3) Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 1.
4) Retain P_{i} for use with the Initial Permutation Known Answer Test for the TECB Mode (Section 5.1.2.2).
5) If encryption is supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding output from the Variable Plaintext Known Answer Test for the TECB mode. If
encryption is not supported, assign a new value to $\mathrm{C}_{\mathrm{i}+1}$ by setting it equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE-- The output from the IUT for this test should consist of 64 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values. The P results should be the set of basis vectors.

5.1.2.2 The Initial Permutation Known Answer Test - TECB Mode

Table 8 Initial Permutation Known Answer Test - TECB Mode

Table 8 illustrates the Initial Permutation Known Answer Test for the TECB mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.

NOTE -- the significant bits are set to " 0 " and the parity bits are set to " 1 " to make odd parity.
b. Initializes the 64-bit ciphertext C_{i} (where $\mathrm{i}=1, \ldots, 64$) to the P_{i} results obtained from the Variable Ciphertext Known Answer Test.
c. Forwards this information to the IUT using Input Type 3.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :
a. Set the input block I_{i} equal to the value of C_{i}.
b. Process I_{i} through the three DEA stages resulting in plaintext P_{i}. This involves processing I_{i} through the DEA stage DEA_{3} in the decrypt state using KEY3, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA 1 in the decrypt state using KEY1, resulting in plaintext P_{i}.
c. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 1.
d. Set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE-- The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values.

5.1.2.3 The Variable Key Known Answer Test for the Decryption Process TECB Mode

Table $9 \quad$ The Variable Key Known Answer Tests for the Decryption Process - TECB Mode
TMOVS: \quad Initialize $\mathrm{KEY}_{1}: \quad \mathrm{KEY}_{1}=\mathrm{KEY}_{1}=\mathrm{KEY}_{1}=8001010101010101$ (odd parity set)

If encryption is supported by the IUT:
Send KEY_{1} (representing KEY_{1}, KEY_{1}, and KEY_{1})
If encryption is not supported by the IUT:
Initialize C_{i} (where $\mathrm{i}=1 . .56$): 56 C values in Table A. 2
Send KEY_{1} (representing $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}$, and KEY_{1}), $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{56}$
IUT: If encryption is supported by the IUT:
Initialize $\mathrm{C}_{\mathrm{i}}=$ first value from output of Variable Key Known Answer Test for the Encryption Process

Otherwise, use the first value received from the TMOVS.
FOR $\mathrm{i}=1$ to 64
\{
IF (i $\bmod 8 \neq 0)$ \{process every bit except parity bits \}
\{

	Perform Triple DES:
$\mathrm{I}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}$	
I_{i} is read into TDEA and is decrypted by DEA_{3} using	
$\mathrm{KEY}_{\mathrm{i}}$ resulting in TEMP1	
TEMP1 is encrypted by DEA_{2} using KEY_{i} resulting	
in TEMP2	
TEMP2 is decrypted by DEA_{1} using $\mathrm{KEY1}_{i}$ resulting	
in P_{i}	

Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY}_{\mathrm{i}}$, $\mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$), C_{i}, P_{i}

```
KEY1 }\mp@subsup{1}{i+1}{}=KEY2\mp@subsup{2}{i+1}{}=KEY3 (i+1 = vector consisting of "0" in
every significant bit position except for a single "1" bit in
position i+1. NOTE -- odd parity is set.
If encryption is supported by the IUT:
```


$\mathrm{C}_{\mathrm{i}+1}=$ corresponding $\mathrm{C}_{\mathrm{i}+1}$ from output of Variable

``` Key Known Answer Test for the Encryption Process
else
\[
\mathrm{C}_{\mathrm{i}+1}=\text { corresponding } \mathrm{C}_{\mathrm{i}+1} \text { from TMOVS }
\]
\}
\}
TMOVS: Compare results of the 56 decryptions with known answers.
Should be \(\mathrm{P}=0000000000000000\) for all 56 rounds.
```

Table 9 illustrates the Variable Key Known Answer Test for the TECB Decryption Process.

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}$, and $\mathrm{KEY} 3_{1}$ to contain " 0 " in every significant bit except for a "1" in the first position, i.e., the 64-bit KEY1 $1_{1 \text { bin }}=$ $K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001$ 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or " 1 " to get odd parity.
b. If the IUT does not support encryption, the C_{i} values are initialized with the 56 constant C values from Table A.2.
c. If encryption is not supported by the IUT, the KEY (representing KEY1, KEY2, KEY3), and the 56 C values are forwarded to the IUT using Input Type 3.
Otherwise, the KEY (representing KEY1, KEY2, and KEY3) is forwarded to the IUT using Input Type 4.
2. The IUT should:
a. If encryption is supported, initialize the C value with the first C value retained from the Variable KEY Known Answer Test for the Encryption Process for the TECB Mode (Section 5.1.1.3). Otherwise, use the first value received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ to 56:

NOTE - 56 is the number of significant bits in a TDES key.

1) Set the input block I_{i} equal to the value of C_{i}.
2) Using the corresponding $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ parameters, process I_{i} through the three DEA stages resulting in plaintext P_{i}. This involves processing I_{i} through the DEA stage DEA_{3} in the decrypt state using KEY3 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using $K E Y 1_{i}$, resulting in plaintext P_{i}.
3) Forward the current values of the loop number i, $\mathrm{KEY}_{\mathrm{i}}$ (representing $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$), C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 1.
4) Set $\mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$, equal to the vector consisting of " 0 " in every significant bit position except for a single "1" bit in position $\mathrm{i}+1$. The parity bits may contain " 1 " or " 0 " to make odd parity.

NOTE -- KEY $1_{i+1}=$ KEY $_{i+1}=$ KEY $_{i+1}$.
5) If encryption is supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value retained from the Variable Key Known Answer Test for the Encryption Process for TECB mode. If encryption is not supported by the IUT, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- The output from the IUT for this test should consist of 56 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values. The P results should be all zeros.

5.1.2.4 Permutation Operation Known Answer Test for Decryption Process TECB Mode

Table 10 The Permutation Operation Known Answer Test for the Decryption Process TECB Mode

TMOVS: Initialize $\mathrm{KEY1}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=($ where $\mathrm{i}=1 . .32)=32 \mathrm{KEY}$ values in Table A. 3 If encryption is supported by the IUT:

Send $\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{32}$ (Since all three keys are the same, these key values represent the values of KEY1, KEY2, and KEY3.)

If encryption is not supported by the IUT:
Initialize C_{i} (where $\mathrm{i}=1 . .32$) $=$ corresponding C values in Table 3
Send $\mathrm{KEY}_{1}, \mathrm{C}_{1}, \mathrm{KEY}_{2}, \mathrm{C}_{2}, \ldots, \mathrm{KEY}_{32}, \mathrm{C}_{32}$ (The key values represent the values of KEY1, KEY2, and KEY3.)

IUT: If encryption is supported by the IUT:
Initialize C_{i} = first value retained from Permutation Operation Known Answer Test for the Encryption Process

Otherwise, use the first value received from the TMOVS.
FOR $\mathrm{i}=1$ to 32
\{

Perform Triple DES:

```
\(\mathrm{I}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}\)
\(\mathrm{I}_{\mathrm{i}}\) is read into TDEA and is decrypted by \(\mathrm{DEA}_{3}\) using
\(\mathrm{KEY}_{\mathrm{i}}\), resulting in TEMP1
TEMP1 is encrypted by \(\mathrm{DEA}_{2}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in
TEMP2
TEMP2 is decrypted by \(\mathrm{DEA}_{1}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in
\(\mathrm{P}_{\mathrm{i}}\)
Send \(\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}\) (representing KEY \(1_{\mathrm{i}}\), \(\mathrm{KEY}_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\) ), \(\mathrm{C}_{\mathrm{i}}\),
\(\mathrm{P}_{\mathrm{i}}\)
\(K E Y 1_{i+1}=K E Y 2_{i+1}=K E Y 3_{i+1}=\) corresponding \(\mathrm{KEY}_{\mathrm{i}+1}\)
supplied by TMOVS
```


If encryption is supported:

$\mathrm{C}_{\mathrm{i}+1}=$ corresponding $\mathrm{C}_{\mathrm{i}+1}$ from output of
Permutation Operation Known Answer Test for the Encryption Process
else

$$
\mathrm{C}_{\mathrm{i}+1}=\text { corresponding } \mathrm{C}_{\mathrm{i}+1} \text { from TMOVS }
$$

\}
TMOVS: Compare results from each loop with known answers.
Should be $\mathrm{P}=0000000000000000$ for all 32 rounds.

Table 10 illustrates the Permutation Operation Known Answer Test for the TECB Decryption Process.

1. The TMOVS:
a. If the IUT supports encryption, the KEY1, KEY2, and KEY3 variables are initialized with the 32 constant KEY values from Table A.3. If the IUT does not support encryption, the KEY-ciphertext (KEY-C) pairs are initialized with the 32 constant KEY-C pairs from Table A.3.

NOTE -- KEY1=KEY2=KEY3.
b. If encryption is supported by the IUT, the 32 KEY values for KEY1, KEY2, and KEY3 are forwarded using Input Type 10. If encryption is not supported by the IUT, the 32 KEY-C pairs are forwarded to the IUT using Input Type 9.
2. The IUT should:
a. If encryption is supported, initialize the C value with the first C value retained from the Permutation Operation Known Answer Test for the Encryption Process for the TECB Mode (Section 5.1.1.4). Otherwise, use the first value received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ to 32 :

1) Set the input block I_{i} equal to the value of C_{i}.
2) Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ values, process I_{i} through the three DEA stages resulting in plaintext P_{i}. This involves processing I_{i} through the DEA stage DEA_{3} in the decrypt state using
$\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in plaintext P_{i}.
3) Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 1.
4) Assign a new value to $\mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$ by setting them equal to the corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- KEY1=KEY2=KEY3.
5) If encryption is supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value retained from the Permutation Operation Known Answer Test for the Encryption Process for the TECB mode. If encryption is not supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE-- The above processing should continue until all 32 KEY-C values are passed as specified in Input Type 9, or all 32 KEY values are passed as specified in Input Type 10. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values. The P results should be all zeros.

5.1.2.5 Substitution Table Known Answer Test for the Decryption Process TECB Mode

Table 11 The Substitution Table Known Answer Test for the Decryption Process TECB Mode

TMOVS: \quad Initialize $\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=19 \mathrm{KEY}$ values in Table A. 4 If encryption is supported by the IUT:

Send $\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{19}$ (Since all three keys are the same, these key values represent the values of KEY1, KEY2, and KEY3.)

If encryption is not supported by the IUT:
Initialize $\mathrm{C}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=$ corresponding C values in Table A. 4
Send $\mathrm{KEY}_{1}, \mathrm{C}_{1}, \mathrm{KEY}_{2}, \mathrm{C}_{2}, \ldots, \mathrm{KEY}_{19}, \mathrm{C}_{19}$ (The key values represent the values of KEY1, KEY2 and KEY3.)

IUT: If encryption is supported by the IUT:
Initialize $\mathrm{C}_{1}=$ first value retained from the Substitution Table Known Answer Test for the Encryption Process

Otherwise, use the first value received from the TMOVS.
FOR $\mathrm{i}=1$ to 19

Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$ (where $\mathrm{KEY}_{\mathrm{i}}$ represents the value of KEY1, KEY2 and KEY3)
$K E Y 1_{i+1}=\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}+1}=$ corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ supplied by TMOVS

If encryption is supported:
$\mathrm{C}_{i+1}=$ corresponding C_{i+1} from output of Substitution Table Known
Answer Test for the Encryption Process for the TECB mode

else

$$
\mathrm{C}_{\mathrm{i}+1}=\text { corresponding } \mathrm{C}_{\mathrm{i}+1} \text { from TMOVS }
$$

TMOVS: Compare results from each loop with known answers. See Table A.4.

As summarized in Table 11, the Substitution Table Known Answer Test for the TECB Decryption Process is performed as follows:

1. The TMOVS:
a. If the IUT supports encryption, the KEY1, KEY2, and KEY3 variables are initialized with the 19 constant KEY values from Table A.4. If the IUT does not support encryption, the KEY-ciphertext (KEY-C) pairs are initialized with the 19 constant KEY-C pairs from Table A.4.

NOTE -- KEY1=KEY2=KEY3.
b. If encryption is supported by the IUT, the 19 KEY values for KEY1, KEY2, and KEY3 are forwarded to the IUT using Input Type 10. The 19 KEY-C pairs are forwarded to the IUT using Input Type 9 if encryption is not supported by the IUT.
2. The IUT should:
a. If encryption is supported, initialize the C_{i} value with the first C value retained from the Substitution Table Known Answer Test for the Encryption Process for the TECB Mode (Section 5.1.1.5). Otherwise, use the first C value received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ to 19 :

1) Set the input block I_{i} equal to the value of C_{i}.
2) Using the corresponding $\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ values, process I_{i} through the three DEA stages resulting in plaintext P_{i}. This involves processing I_{i} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{i}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using $K E Y 1_{i}$, resulting in plaintext P_{i}.
3) Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 1.
4) Set $K E Y 1_{i+1}, K E Y 2_{i+1}$, and $K E Y 3_{i+1}$ equal to the next key supplied by the TMOVS.
5) If encryption is supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value retained from the Substitution Table Known Answer Test for the Encryption Process for the TECB mode. If encryption is not supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE --The above processing should continue until all 19 KEY-C pairs, as specified in Input Type 9, or all 19 KEY values, as specified in Input Type 10, are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 1.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values.

5.1.2.6 Monte Carlo Test for the Decryption Process - TECB Mode

Table 12 The Monte Carlo Test for the Decryption Process - TECB Mode


```
        KEY3 }\mp@subsup{}{\textrm{i}}{=}=\mp@subsup{\textrm{KEY1}}{\textrm{i}}{\mathbf{)}
            KEY3 }\mp@subsup{\textrm{i}+1}{}{= KEY3 }\mp@subsup{\textrm{K}}{\textrm{i}}{}\oplus\mp@subsup{\textrm{P}}{\textrm{j}}{
        else
            KEY3 }\mp@subsup{\textrm{i}+1}{}{=}=\mp@subsup{\textrm{KEY}}{\textrm{i}}{}\oplus\mp@subsup{\textrm{P}}{\textrm{j}-2}{
        C
}
TMOVS: Check IUT's output for correctness.
```

As summarized in Table 12, the Monte Carlo Test for the TECB Decryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3, and the ciphertext C variables. The C and KEYs consist of 64 bits.
b. Forwards this information to the IUT using Input Type 20.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. Record the current values of the output loop number i, KEY1 $1_{i}, K E Y 2_{i}, \mathrm{KEY}_{\mathrm{i}}$, and C_{0}.
b. Perform the following for $\mathrm{j}=0$ through 9999:
1) Set the input block I_{j} equal to the value of C_{j}.
2) Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{{ }_{i}}$ values, process I_{j} through the three DEA stages resulting in plaintext P_{j}. This involves processing I_{j} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using KEY_{2}, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using $K E Y 1_{i}$, resulting in plaintext P_{j}.
3) Prepare for loop $j+1$ by assigning C_{j+1} with the current value of P_{j}.
c. \quad Record P_{j}.
d. Forward all recorded information for this loop, as specified in Output Type 5, to the TMOVS.
e. Assign new values to the KEY parameters, KEY1, KEY2, and KEY3 in preparation for the next outer loop. Note $\mathrm{j}=9999$.

The new $\mathrm{KEY}_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY} 1_{\mathrm{i}}$ with the P_{j}.

The new $\mathrm{KEY} 2_{\mathrm{i}+1}$ calculation is based on the values of the keys. . If $\mathrm{KEY} 1_{\mathrm{i}}$ and $K E Y 2_{i}$ are independent and $K E Y 3_{i}=K E Y 1_{i}$, or $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ are independent, the new $\mathrm{KEY} 2_{i+1}$ should be calculated by exclusive-ORing the current KEY_{2} with the $\mathrm{P}_{\mathrm{j}-1}$. If $\mathrm{KEY} 1_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the P_{j}.

The new $\mathrm{KEY}_{\mathrm{i}+1}$ calculation is also based on the values of the keys. If $\mathrm{KEY} 1_{\mathrm{i}}$, $K E Y 2_{i}$, and $\mathrm{KEY}_{\mathrm{i}}$ are independent, the new $\mathrm{KEY}_{i_{+1}}$ should be calculated by exclusive-ORing the current KEY_{3} with the $\mathrm{P}_{\mathrm{j}-2}$. If $\mathrm{KEY} 1_{i}$ and $\mathrm{KEY}_{\mathrm{i}}$ are independent and $\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, or if $\mathrm{KEY} 1_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY} 3_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the P_{j}.
f. Assign a new value to C in preparation for the next output loop. C_{0} should be assigned the value of the current P_{j}. Note $j=9999$.

NOTE -- the new C should be denoted as C_{0} to be used for the first pass through the inner loop when $\mathrm{j}=0$.
NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 5.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values.

5.2 Cipher Block Chaining (TCBC) Mode

The IUTs which implement the Cipher Block Chaining (TCBC) mode are validated by successfully completing a series of Known Answer tests and Monte Carlo tests corresponding to the cryptographic processes allowed by the IUT.

5.2.1 Encryption Process

The process of validating an IUT which implements the TCBC mode of operation in the encryption process should involve the successful completion of the following six tests:

1. The Variable Plaintext Known Answer Test - TCBC mode
2. The Inverse Permutation Known Answer Test - TCBC mode
3. The Variable Key Known Answer Test for the Encryption Process - TCBC mode
4. The Permutation Operation Known Answer Test for the Encryption Process - TCBC mode
5. The Substitution Table Known Answer Test for the Encryption Process - TCBC mode
6. The Monte Carlo Test for the Encryption Process - TCBC mode

An explanation of the tests follows.

5.2.1.1 The Variable Plaintext Known Answer Test - TCBC Mode

Table 13 The Variable Plaintext Known Answer Test - TCBC Mode

Table 13 illustrates the Variable Plaintext Known Answer Test for the TCBC mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. Initializes the 64-bit plaintext P_{1} to the basis vector containing a" 1 " in the first bit position and " 0 " in the following 63 positions, i.e., $\mathrm{P}_{1 \text { bin }}=1000000000000000$ 00 . The equivalent of this value in hexadecimal notation is 8000000000000000 .
d. Forwards this information to the IUT using Input Type 2.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64:
a. Calculate the input block I_{i} by exclusive-ORing P_{i} with IV.
b. Process I_{i} through the three DEA stages resulting in ciphertext C_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA $_{1}$, in the encrypt state using KEY1, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, P_{i}, and the resulting C_{i} to the TMOVS as specified in Output Type 2.
d. Retain C_{i} for use with the Inverse Permutation Known Answer Test for the TCBC Mode (Section 5.2.1.2), and, if the IUT supports the decryption process, for use with the Variable Ciphertext Known Answer Test for the TCBC Mode (Section 5.2.2.1).
e. Assign a new value to $\mathrm{P}_{\mathrm{i}+1}$ by setting it equal to the value of a basis vector with a " 1 " bit in position $i+1$, where $i+1=2, \ldots, 64$.

NOTE -- This continues until every possible basis vector has been represented by the P, i.e., 64 times. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.1.

5.2.1.2 The Inverse Permutation Known Answer - TCBC Mode

Table 14 The Inverse Permutation Known Answer Test - TCBC Mode

TMOVS:	Initialize	KEYs:	$\begin{aligned} & \text { KEY1 }=\text { KEY2 }=\text { KEY3 }=0101010101010101 \text { (odd parity } \\ & \text { set) } \end{aligned}$
			$\mathrm{IV}=0000000000000000$
			$P_{i}($ where $i=1 . .64)=64 \mathrm{C}$ values from the Variable Plaintext Known Answer Test
	Send		KEY (representing KEY1, KEY2, and KEY3), IV, $\mathrm{P}_{1}, \ldots, \mathrm{P}_{64}$
IUT:	FOR i $=1$ to 64		
	Perform Triple DES:	$\mathrm{I}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}} \oplus \mathrm{IV}$	
		I_{i} is read into TDEA and is encrypted by DEA ${ }_{1}$ using KEY1, resulting in TEMP1	
		TEMP1 is decrypted by DEA 2 using KEY2, resulting in TEMP2	
		TEMP2 is encrypted by DEA_{3} using KEY3, resulting in C_{i}	
		Send i, KEY (representing KEY1, KEY2, KEY3), IV, $\mathrm{P}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}$	
		$\mathrm{P}_{\mathrm{i}+1}=$ corresponding $\mathrm{C}_{\mathrm{i}+1}$ from TMOVS	
	\}		
TMOVS:	Compare results from each loop with known answers.		
	Should b	he set of b	is vectors.

Table 14 illustrates the Inverse Permutation Known Answer Test for the TCBC mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.

[^0]b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. Initializes the 64-bit plaintext P_{i} (where $\mathrm{i}=1 . .64$) to the C_{i} results obtained from the Variable Plaintext Known Answer Test.
d. Forwards this information to the IUT using Input Type 5.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :
a. Calculate the input block I_{i} by exclusive-ORing P_{i} with IV.
b. Process I_{i} through the three DEA stages resulting in ciphertext C_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, P_{i}, and the resulting C_{i} to the TMOVS as specified in Output Type 2.
d. Assign a new value to $\mathrm{P}_{\mathrm{i}+1}$ by setting it equal to the corresponding output from the TMOVS.

NOTE -- The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values. The C values should be the set of basis vectors.

5.2.1.3 The Variable Key Known Answer Test for the Encryption Process TCBC Mode

Table 15 The Variable Key Known Answer Test for the Encryption Process - TCBC Mode

As summarized in Table 15, the Variable Key Known Answer Test for the TCBC Encryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}$, and $\mathrm{KEY} 3_{1}$ to contain " 0 " in every significant bit except for a " 1 " in the first position, i.e., the 64-bit $K E Y 1_{1 \text { bin }}=K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=100000000000000100000001$ 0000000100000001000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or " 1 " to get odd parity.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. Initializes the 64-bit plaintext P to the value of 0 , i.e., $P_{\text {hex }}=00000000000000$ 00.
d. Forwards this information to the IUT using Input Type 2.
2. The IUT should perform the following for $\mathrm{i}=1$ to 56 :

NOTE -- 56 is the number of significant bits in a TDES key.
a. Calculate the input block I_{i} by exclusive-ORing P with IV.
b. Using the corresponding $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$ parameters, process I_{i} through the three DEA stages resulting in ciphertext C_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY3}_{\mathrm{i}}$, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number i, $\mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY} 1_{\mathrm{i}}$, $\mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$, , IV, P , and the resulting C_{i} to the TMOVS as specified in Output Type 2.
d. If the IUT supports the decryption process, retain C_{i} for use with the Variable KEY Known Answer Test for the Decryption Process for the TCBC Mode (Section 5.2.2.3).
e. Set $\mathrm{KEY} 1_{i+1}, \mathrm{KEY} 2_{i+1}$, and $\mathrm{KEY} 3_{i+1}$, equal to the vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position $\mathrm{i}+1$. The parity bits may contain " 1 " or " 0 " to make odd parity.

NOTE -- The above processing continues until every significant basis vector has been represented by the KEY parameter. The output from the IUT for this test should consist of 56 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.2.

5.2.1.4 Permutation Operation Known Answer Test for the Encryption Process - TCBC Mode

Table 16 The Permutation Operation Known Answer Test for the Encryption Process TCBC Mode

TMOVS:	Initialize	$\mathrm{KEY}_{1}=\mathrm{KEY} 2_{\mathrm{i}}=\mathrm{KEY} 3_{\mathrm{i}}($ where $\mathrm{i}=1 . .32)=32 \mathrm{KEY}$ values in Table A 3
		$\mathrm{IV}=0000000000000000$
		$\mathrm{P}=0000000000000000$
	Send	P, IV, $\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{32}$ (Since all three keys are the same, these key values represent the values of KEY1, KEY2 and KEY3.)
IUT:	FOR i $=1$ to 32	
	\{	
	Perform Triple DES:	$\mathrm{I}_{\mathrm{i}}=\mathrm{P} \oplus \mathrm{IV}$
		I_{i} is read into TDEA and is encrypted by DEA_{1} using KEY 1_{i}, resulting in TEMP1
		TEMP1 is decrypted by DEA_{2} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP2
		TEMP2 is encrypted by DEA_{3} using KEY_{3}, resulting in C_{i}
		Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and KEY_{3}) , IV, P, C_{i}
		$K E Y 1_{i+1}=K E Y 2_{i+1}=\mathrm{KEY}^{i+1}$ $=\mathrm{KEY}_{\mathrm{i}+1}$ from TMOVS
	\}	
TMOVS:	Compare resu	s with known answers. Use Table A.3.

Table 16 illustrates the Permutation Operation Known Answer Test for the TCBC Encryption Process.

1. The TMOVS:
a. Initializes the KEY1, KEY2, and KEY3 variables with the 32 constant KEY values from Table A.3.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. Initializes the plaintext P to the value of 0 , i.e., $\mathrm{P}_{\text {hex }}=0000000000000000$.
d. Forwards this information to the IUT using Input Type 8.
2. The IUT should perform the following for $\mathrm{i}=1$ to 32 :
a. Calculate the input block I_{i} by exclusive-ORing P with IV.
b. Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ values, process I_{i} through the three DEA stages resulting in ciphertext C_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using $K E Y 1_{i}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, P, and the resulting C_{i} to the TMOVS as specified in Output Type 2.
d. If the IUT supports the decryption process, retain C_{i} for use with the Permutation Operation Known Answer Test for the Decryption Process for the TCBC mode (Section 5.2.2.4).
e. Set $\mathrm{KEY}_{1+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}_{\mathrm{i}+1}}$ equal to the next key supplied by the TMOVS.

NOTE -- The above processing should continue until all 32 KEY values are processed. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.3.

5.2.1.5 Substitution Table Known Answer Test for the Encryption Process TCBC Mode

Table 17 The Substitution Table Known Answer Test for the Encryption Process TCBC Mode

TMOVS:	Initialize	$\mathrm{KEY}_{1}=\mathrm{KEY} 2_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=19 \mathrm{KEY}$ values in Table A. 4
		$\mathrm{P}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=19$ corresponding P values in Table A. 4
		$I V=0000000000000000$
	Send	IV, 19, $\mathrm{KEY}_{1}, \mathrm{P}_{1}, \mathrm{KEY}_{2}, \mathrm{P}_{2}, \ldots, \mathrm{KEY}_{19}, \mathrm{P}_{19}$ (Since all three keys are the same, these key values represent the values of KEY1, KEY2 and KEY3.)
IUT:	FOR i $=1$ to 19	
	\{	
	Perform Triple DES:	$\mathrm{I}_{\mathrm{i}}=\mathrm{P}_{\mathrm{i}} \oplus \mathrm{IV}$
		I_{i} is read into TDEA and is encrypted by DEA_{1} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP1
		TEMP1 is decrypted by DEA_{2} using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in TEMP2
		TEMP2 is encrypted by DEA_{3} using $\mathrm{KEY}^{\text {i }}$, resulting in C_{i}
		Send i, KEY ${ }_{\mathrm{i}}$ (representing $\mathrm{KEY}_{1}{ }_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY}{ }_{\mathrm{i}}$), IV, $\mathrm{P}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}$
		KEY1 ${ }_{\mathrm{i}+1}=\mathrm{KEY} 2_{\mathrm{i}+1}=\mathrm{KEY}^{\mathrm{i}+1}$ $=\mathrm{KEY}_{\mathrm{i}+1}$ from TMOVS
		$\mathrm{P}_{\mathrm{i}+1}=$ corresponding $\mathrm{P}_{\mathrm{i}+1}$ from TMOVS
	\}	

TMOVS: Compare results from each loop with known answers. Use Table A.4.

As summarized in Table 17, the Substitution Table Known Answer Test for the TCBC Encryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY-plaintext (KEY-P) pairs with the 19 constant KEY-P values from Table A.4. The KEY value indicates the value of KEY1, KEY2, and KEY3, i.e., $\mathrm{KEY} 1=\mathrm{KEY} 2=\mathrm{KEY} 3$.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. Forwards this information to the IUT using Input Type 11.
2. The IUT should perform the following for $\mathrm{i}=1$ to 19 :
a. Calculate the input block I_{i} by exclusive-ORing P_{i} with IV.
b. Using the corresponding $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ values, process I_{i} through the three DEA stages resulting in ciphertext C_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using $K E Y 1_{i}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA $_{3}$, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in ciphertext C_{i}.
c. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, P_{i}, and the resulting C_{i} to the TMOVS as specified in Output Type 2.
d. If the IUT supports the decryption process, retain C_{i} for use with the Substitution Table Known Answer Test for the Decryption Process for the TCBC mode (Section 5.2.2.5).
e. Set $\mathrm{KEY}_{1+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$ equal to the $\mathrm{KEY}_{\mathrm{i}+1}$ supplied by the TMOVS.
f. Set $\mathrm{P}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{P}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- The above processing should continue until all 19 KEY-P pairs are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.4.

5.2.1.6 Monte Carlo Test for the Encryption Process - TCBC Mode

Table 18 The Monte Carlo Test for the Encryption Process - TCBC Mode


```
            KEY2}\mp@subsup{\textrm{i}}{\textrm{i}}{}\mathrm{ , and }\textrm{KEY}\mp@subsup{3}{\textrm{i}}{}\mathrm{ are independent)
            KEY2 }\mp@subsup{\textrm{i}}{+1}{}=\mp@subsup{\textrm{KEY2}}{\textrm{i}}{}\oplus\mp@subsup{\textrm{C}}{\textrm{j}-1}{
                ELSE
            KEY2 }\mp@subsup{}{\textrm{i}+1}{}=\mp@subsup{\textrm{KEY}}{\textrm{i}}{\textrm{i}
            IF (KEY1 1 = KEY2 }\mp@subsup{2}{\textrm{i}}{2}=\mp@subsup{\textrm{KEY}}{\textrm{i}}{2})\mathrm{ or (KEY1 1 and KEY2 }\mp@subsup{}{\textrm{i}}{2}\mathrm{ are independent and
            KEY3 }\mp@subsup{}{\textrm{i}}{= KEY1 (i)
            KEY3 i+1 = KEY3 }\mp@subsup{\mp@code{i}}{}{\oplus}\mp@subsup{\textrm{C}}{\textrm{j}}{
```


ELSE

```
\[
\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{j}-2}
\]
\[
P_{0}=C_{j-1}
\]
\[
\mathrm{CV}_{0}=\mathrm{C}_{\mathrm{j}}
\]
```

```
}
```

```
}
```

TMOVS: Check IUT's output for correctness.

As summarized in Table 18, the Monte Carlo Test for the TCBC Encryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3, the initialization vector IV, and the plaintext P variables. The P, IV, and KEYs consist of 64 bits each.
b. Forwards this information to the IUT using Input Type 21.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. If $\mathrm{i}=0$ (if this is the first time through this loop), set the chaining value CV_{0} equal to the IV.
b. Record the current values of the output loop number i, KEY1 $1_{i}, K E Y 2_{i}, K E Y 3_{i}$, CV_{0}, and P_{0}.
c. Perform the following for $\mathrm{j}=0$ through 9999:
1) Calculate the input block I_{j} by exclusive-ORing P_{j} with CV_{j}.
2) Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and KEY_{i} values, process I_{j} through the three DEA stages resulting in ciphertext C_{j}. This involves processing I_{j} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY_{1}, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY 2_{i}, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in ciphertext C_{j}.
3) Prepare for loop $\mathrm{j}+1$ by doing the following:
a) If the inner loop being processed in the first loop, i.e., $\mathrm{j}=0$, assign P_{j+1} with the current value of CV_{0}. Otherwise, assign P_{j+1} with the C from the previous inner cycle, $\mathrm{C}_{\mathrm{j}-1}$.
b) Assign $\mathrm{CV}_{\mathrm{j}+1}$ with the current value of C_{j}.
d. Record the C_{j}.
e. Forward all recorded information from this loop, as specified in Output Type 6, to the TMOVS.
f. In preparation for the next outer loop (Note $\mathrm{j}=9999$):
4) Assign new values to the KEY parameters, KEY1, KEY2, and KEY3 in preparation for the next outer loop.

The new $\mathrm{KEY} 1_{i+1}$ should be calculated by exclusive-ORing the current $K E Y 1_{i}$ with the C_{j}.

The new $\mathrm{KEY} 2_{\mathrm{i}+1}$ calculation is based on the values of the keys. If $\mathrm{KEY} 1_{\mathrm{i}}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY} 3_{i}=\mathrm{KEY} 1_{\mathrm{i}}$, or $\mathrm{KEY}_{1}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ are independent, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY} 2_{\mathrm{i}}$ with the $\mathrm{C}_{\mathrm{j}-1}$. If
$K E Y 1_{i}=\mathrm{KEY}_{2}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 2_{i}$ with the C_{j}.

The new $\mathrm{KEY3}_{i+1}$ calculation is also based on the values of the keys. If $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ are independent, the new $K E Y 3_{i+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{i_{i}}$ with the $\mathrm{C}_{\mathrm{j}-2}$. If $\mathrm{KEY}_{\mathrm{i}}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY} 3_{i}=\mathrm{KEY} 1_{\mathrm{i}}$, or if
$\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY}_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the C_{j}.
2) Assign a new value to P_{0} in preparation for the next output loop. P_{0} should be assigned the value of $\mathrm{C}_{\mathrm{j}-1}$.

NOTE -- the new P should be denoted as P_{0} to be used for the first pass through the inner loop when $\mathrm{j}=0$.
3) Assign a new value to CV_{0} in preparation for the next outer loop. CV_{0} should be assigned the value of C_{j}.

NOTE -- the new CV should be denoted as CV_{0} because this value is used for the first pass through the inner loop when $\mathrm{j}=0$.

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 6.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

5.2.2 Decryption Process

The process of validating an IUT for the TCBC mode which implements the decryption process involves the successful completion of the following six tests:

1. The Variable Ciphertext Known Answer Test - TCBC mode
2. The Initial Permutation Known Answer Test - TCBC mode
3. The Variable Key Known Answer Test for the Decryption Process - TCBC mode
4. The Permutation Operation Known Answer Test for the Decryption Process - TCBC mode
5. The Substitution Table Known Answer Test for the Decryption Process - TCBC mode
6. The Monte Carlo Test for the Decryption Process - TCBC mode

An explanation of the tests follows.

5.2.2.1 The Variable Ciphertext Known Answer Test - TCBC Mode

Table 19 The Variable Ciphertext Known Answer Test - TCBC Mode

else

$$
\mathrm{C}_{\mathrm{i}+1}=\text { corresponding } \mathrm{C}_{\mathrm{i}+1} \text { value from TMOVS }
$$

\}
TMOVS: Compare results from each loop with known answers. Should be the set of basis vectors.

Table 19 illustrates the Variable Ciphertext Known Answer Test for the TCBC mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. If the IUT does not support encryption, the 64 constant ciphertext values are initialized with the 64 constant C values from Table A.1.
d. If encryption is supported by the IUT, the KEYs and the IV are forwarded to the IUT, as specified in Input Type 6. If encryption is not supported by the IUT, the KEYs, the IV, and 64 C values are forwarded to the IUT using Input Type 5.
2. The IUT should:
a. If encryption is supported, initialize the C value with the first C value retained from the Variable Plaintext Known Answer Test for the TCBC Mode (Section 5.2.1.1). Otherwise, use the first value received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ through 64:
1) Set the input block I_{i} equal to the value of C_{i}.
2) Process I_{i} through the three DEA stages resulting in the output block O_{i}. This involves processing I_{i} through the DEA stage DEA_{3}, in the decrypt state using KEY3, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2}, in the encrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1}, in the decrypt state using KEY1, resulting in output block O_{i}.
3) Calculate the plaintext P_{i} by exclusive-ORing O_{i} with IV.
4) Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 2.
5) Retain P_{i} for use with the Initial Permutation Known Answer Test for the TCBC Mode (Section 5.2.2.2).
6) If encryption is supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding output from the Variable Plaintext Known Answer Test for the TCBC mode. If encryption is not supported, assign a new value to $\mathrm{C}_{\mathrm{i}+1}$ by setting it equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- The output from the IUT for this test should consist of 64 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values. The P results should be the set of basis vectors.

5.2.2.2 The Initial Permutation Known Answer Test - TCBC Mode

Table 20 The Initial Permutation Known Answer Test - TCBC Mode

Table 20 illustrates the Initial Permutation Known Answer Test for the TCBC mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c Initializes the 64 C values with the 64 P values obtained from the Variable Ciphertext Known Answer Test.
d. Forwards the KEY (representing KEY1, KEY2, and KEY3), IV, and the 64 C values to the IUT using Input Type 5.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :
a. Set the input block I_{i} equal to the value of C_{i}.
b. Process I_{i} through the three DEA stages resulting in the output block O_{i}. This involves processing I_{i} through the DEA stageDEA ${ }_{3}$ in the decrypt state using KEY3, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using KEY1, resulting in O_{i}.
c. Calculate the plaintext P_{i} by exclusive-ORing O_{i} with IV.
d. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 2.
e. \quad Set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

5.2.2.3 The Variable Key Known Answer Test for the Decryption Process TCBC Mode

Table 21 The Variable Key Known Answer Test for the Decryption Process - TCBC Mode

TMOVS:	Initialize	KEYs: $\mathrm{KEY}_{1}=\mathrm{KEY}_{1}=\mathrm{KEY}_{1}=8001010101010101$ (odd parity set) $I V=0000000000000000$
	If encrypt	is supported by the IUT:
	Send	KEY_{1} (representing KEY1 ${ }_{1}, \mathrm{KEY}_{1}$, and KEY_{1}), IV
	If encrypt	is not supported by the IUT:
	Initialize	C_{i} values (where $\mathrm{i}=1 . .56$): C values in Table A. 2
	Send	KEY_{1} (representing $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}$, and KEY_{1}), IV, $\mathrm{C}_{1}, \mathrm{C}_{2}$, ,

IUT: If encryption is supported by the IUT:
Initialize $\quad \mathrm{C}_{1}=$ first value from output of Variable Key Known Answer Test for the Encryption Process

Otherwise, use the first value received from the TMOVS.
FOR $\mathrm{i}=1$ to 64
\{
IF (i $\bmod 8 \neq 0)$ \{process every bit except parity bits\}
\{
Perform $\quad \mathrm{I}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}$
Triple DES:
I_{i} is read into TDEA and is decrypted by DEA $_{3}$ using KEY_{i}, resulting in TEMP1

TEMP1 is encrypted by DEA_{2} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP2
TEMP2 is decrypted by DEA_{1} using $\mathrm{KEY} 1_{i}$, resulting in O_{i}
$\mathrm{P}_{\mathrm{i}}=\mathrm{O}_{\mathrm{i}} \oplus \mathrm{IV}$
Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$), $\mathrm{IV}, \mathrm{C}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$

```
KEY1 i+1 = KEY2 }\mp@subsup{\textrm{i}}{\textrm{i}1}{}=\textrm{KEY3}\mp@subsup{}{\textrm{i}+1}{}= vector consisting of "0" in every
significant bit position except for a single "1" bit in the i+1 position.
NOTE -- odd parity is set.
If encryption is supported by the IUT:
\(\mathrm{C}_{\mathrm{i}+1}=\) corresponding \(\mathrm{C}_{\mathrm{i}+1}\) from output of Variable Key Known Answer Test for the Encryption Process
else
\(\mathrm{C}_{\mathrm{i}+1}=\) corresponding \(\mathrm{C}_{\mathrm{i}+1}\) value from TMOVS
\}
\}
TMOVS: Compare results of the 56 decryptions with known answers.
Should be \(\mathrm{P}=0000000000000000\) for all 56 rounds.
```

Table 21 illustrates the Variable Key Known Answer Test for the TCBC Decryption Process.

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY} 1_{1}, \mathrm{KEY}_{1}$, and $\mathrm{KEY} 3_{1}$ to contain " 0 " in every significant bit except for a "1" in the first position, i.e., the 64-bit KEY1 $1_{1 \text { bin }}=$ $K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001$ 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or " 1 " to get odd parity.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. If the IUT does not support encryption, the C_{i} values are initialized with the 56 constant C values from Table A.2.
d. If encryption is not supported by the IUT, the KEY (representing KEY1, KEY2, and KEY3), IV, and the 56 C values are forwarded to the IUT, as specified in Input Type 5. Otherwise, the KEY1, KEY2, KEY3, and IV are forwarded to the IUT, as specified in Input Type 6.
2. The IUT should:
a. If encryption is supported, initialize the C_{1} value with the first C value retained from the Variable KEY Known Answer Test for the Encryption Process for the TCBC Mode (Section 5.2.1.3). Otherwise, use the first value received from the TMOVS.
b. \quad Perform the following for $\mathrm{i}=1$ to 56 :

NOTE -- 56 is the number of significant bits in a TDES key.

1) Set the input block I_{i} equal to the value of C_{i}.
2) Using the corresponding $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ parameters, process I_{i} through the three DEA stages resulting in the output block O_{i}. This involves processing I_{i} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using $K E Y 1_{i}$, resulting in O_{i}.
3) Calculate the plaintext P_{i} by exclusive-ORing O_{i} with IV.
4) Forward the current values of the loop number i, $\mathrm{KEY}_{\mathrm{i}}$ (representing $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$), IV, C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 2.
5) Set $\mathrm{KEY}_{1+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}_{i+1},}$, equal to the vector consisting of " 0 " in every significant bit position except for a single "1" bit in position $i+1$. The parity bits may contain " 1 " or " 0 " to make odd parity.

NOTE -- KEY $1_{i+1}=K E Y 2_{i+1}=K E Y 3_{i+1}$.
6) If encryption is supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value retained from the Variable Key Known Answer Test for the Encryption Process for TCBC mode. If encryption is not supported by the IUT, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- The output from the IUT for this test should consist of 56 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values. The P results should be all zeros.

5.2.2.4 Permutation Operation Known Answer Test for Decryption Process TCBC Mode

Table 22 The Permutation Operation Known Answer Test for the Decryption Process TCBC Mode

TMOVS: \quad Initialize	$\mathrm{KEY} 1_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}($ where $\mathrm{i}=1 . .32)=32 \mathrm{KEY}$ values in Table A.3
	$\mathrm{IV}=0000000000000000$

If encryption is supported by the IUT:
Send IV, $\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{32}$ (Since all three keys are the same, these key values represent the values of KEY1, KEY2, and KEY3.)

If encryption not supported by the IUT:

Initialize	$\mathrm{C}_{\mathrm{i}}($ where $\mathrm{i}=1 . .32)=$ corresponding C values in Table A. 3
Send	$\mathrm{IV}, \mathrm{KEY}_{1}, \mathrm{C}_{1}, \mathrm{KEY}_{2}, \mathrm{C}_{2}, \ldots, \mathrm{KEY}_{32}, \mathrm{C}_{32}$ (The key values represent
the values of $\mathrm{KEY} 1, \mathrm{KEY} 2$, and KEY3.)	

IUT: If encryption is supported by the IUT:
Initialize $\quad \mathrm{C}_{1}=$ first value retained from Permutation Operation Known Answer Test for the Encryption Process

Otherwise, use the first value received from the TMOVS.
FOR i $=1$ to 32
\{

Perform
Triple DES:
$\mathrm{I}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}$
I_{i} is read into TDEA and is decrypted by DEA_{3} using $\mathrm{KEY}_{\mathrm{i}}$,
resulting in TEMP1
TEMP1 is encrypted by DEA_{2} using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in TEMP2
TEMP2 is decrypted by DEA_{1} using $\mathrm{KEY} 1_{i}$, resulting in O_{i}
$\mathrm{P}_{\mathrm{i}}=\mathrm{O}_{\mathrm{i}} \oplus \mathrm{IV}$

Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing KEY $1_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$), IV, $\mathrm{C}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$
$K E Y 1_{i+1}=\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}+1}=$ corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ supplied by

TMOVS

If encryption is supported:
$\mathrm{C}_{\mathrm{i}+1}=$ corresponding $\mathrm{C}_{\mathrm{i}+1}$ from output of Permutation Operation Known Answer Test for the Encryption Process
else
$\mathrm{C}_{\mathrm{i}+1}=$ corresponding $\mathrm{C}_{\mathrm{i}+1}$ from TMOVS
\}
TMOVS: Compare results from each loop with known answers.
Should be $\mathrm{P}=0000000000000000$ for all 32 rounds.

Table 22 illustrates the Permutation Operation Known Answer Test for the TCBC Decryption Process.

1. The TMOVS:
a. If the IUT supports encryption, the KEY1, KEY2, and KEY3 variables are initialized with the 32 constant KEY values from Table A.3. If the IUT does not support encryption, the KEY-ciphertext (KEY-C) pairs are initialized with the 32 constant KEY-C pairs from Table A.3.

NOTE -- KEY1=KEY2=KEY3.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. If encryption is supported by the IUT, the 32 KEY values for KEY1, KEY2, and KEY3, and the IV value are forwarded to the IUT using Input Type 12. If encryption is not supported by the IUT, the 32 KEY and C pairs and the IV value are forwarded to the IUT using Input Type 11.
2. The IUT should:
a. If encryption is supported, initialize the C_{i} value with the first C value retained from the Permutation Operation Known Answer Test for the Encryption Process for the TCBC Mode (Section 5.2.1.4). Otherwise, use the first value received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ to 32 :

1) Set the input block I_{i} equal to the value of C_{i}.
2) Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ values, process I_{i} through the three DEA stages resulting in output block O_{i}. This involves processing I_{i} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using $K E Y 2_{2}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY1}_{\mathrm{i}}$, resulting in O_{i}.
3) Calculate the plaintext P_{i} by exclusive-ORing O_{i} with IV.
4) Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 2.
5) Assign a new value to $\mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$ by setting them equal to the corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- KEY1=KEY2=KEY3.
6) If encryption is supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value retained from the Permutation Operation Known Answer Test for the Encryption Process for the TCBC mode. If encryption is not supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- The above processing should continue until all 32 KEY-C values are passed as specified in Input Type 11, or all 32 KEY values are passed as specified in Input Type 12. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values. The P results should be all zeros.

5.2.2.5 Substitution Table Known Answer Test for the Decryption Process TCBC Mode

Table 23 The Substitution Table Known Answer Test for the Decryption Process TCBC Mode

TMOVS: Initialize $\mathrm{KEY1}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=19 \mathrm{KEY}$ values in Table A. 4
$I V=0000000000000000$
If encryption is supported by the IUT:
Send IV, $\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{19}$ (Since all three keys are the same, these key values represent the values of KEY1, KEY2, and KEY3.)

If encryption not supported:
Initialize $\quad \mathrm{C}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=19 \mathrm{C}$ values in Table A. 4
Send IV, $\mathrm{KEY}_{1}, \mathrm{C}_{1}, \mathrm{KEY}_{2}, \mathrm{C}_{2}, \ldots, \mathrm{KEY}_{19}, \mathrm{C}_{19}$ (These key values represent the values of KEY1, KEY2, and KEY3.)

IUT: If encryption is supported:
Initialize $\quad C_{1}=$ first C value retained from the Substitution Table Known Answer Test for the Encryption Process.

Otherwise, use the first value received from the TMOVS
FOR $\mathrm{i}=1$ to 19
\{

Perform Triple DES:
$\mathrm{I}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}$
I_{i} is read into TDEA and is decrypted by DEA_{3} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP1

TEMP1 is encrypted by DEA_{2} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP2
TEMP2 is decrypted by DEA_{1} using $\mathrm{KEY} 1_{i}$, resulting in O_{i}
$\mathrm{P}_{\mathrm{i}}=\mathrm{O}_{\mathrm{i}} \oplus \mathrm{IV}$
Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{IV}, \mathrm{C}_{\mathrm{i}}, \mathrm{P}_{\mathrm{i}}$ (where $\mathrm{KEY}_{\mathrm{i}}$ represents the value of KEY1, KEY2 and KEY3)
$K E Y 1_{i+1}=\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}+1}=$ corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ supplied by

```
        TMOVS
        If encryption is supported:
        C}\mp@subsup{\textrm{C}}{\textrm{i}1}{}=\mathrm{ corresponding C from output of Substitution Table Known Answer
        Test for the Encryption Process for the TCBC mode
        else
        C
    }
TMOVS: Compare results from each loop with known answers. See Table A.4.
```

As summarized in Table 23, the Substitution Table Known Answer Test for the TCBC Decryption Process is performed as follows:

1. The TMOVS:
a. If the IUT supports encryption, the KEY1, KEY2, and KEY3 variables are initialized with the 19 constant KEY values from Table A.4. If the IUT does not support encryption, the KEY-ciphertext (KEY-C) pairs are initialized with the 19 constant KEY-C pairs from Table A.4.

NOTE -- KEY1=KEY2=KEY3.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. If encryption is supported by the IUT, the IV and the 19 KEY values for KEY1, KEY2, and KEY3 are forwarded to the IUT using Input Type 12. Otherwise, if encryption is not supported by the IUT, the IV and the 19 KEY-C pairs are forwarded to the IUT using Input Type 11.
2. The IUT should:
a. If encryption is supported, initialize the C_{1} value with the first C value retained from the Substitution Table Known Answer Test for the Encryption Process for the TCBC Mode (Section 5.2.1.5). Otherwise, use the first C value received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ to 19 :

1) Set the input block I_{i} equal to the value of C_{i}.
2) Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and KEY_{i} values, process I_{i} through the three DEA stages resulting in the output block O_{i}. This involves processing I_{i} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in O_{i}.
3) Calculate the plaintext P_{i} by exclusive-ORing O_{i} with IV.
4) Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, C_{i}, and the resulting P_{i} to the TMOVS as specified in Output Type 2.
5) $\operatorname{Set} \mathrm{KEY} 1_{\mathrm{i}+1}, \mathrm{KEY} 2_{\mathrm{i}+1}$, and $\mathrm{KEY} 3_{\mathrm{i}+1}$ equal to the next key supplied by the TMOVS.
6) If encryption is supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value retained from the Substitution Table Known Answer Test for the Encryption Process for the TCBC mode. If encryption is not supported, set $\mathrm{C}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{C}_{\mathrm{i}+1}$ value supplied by the TMOVS.

NOTE -- The above processing should continue until all 19 KEY-C pairs, as specified in Input Type 11, or all 19 KEY values, as specified in Input Type 12, are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

5.2.2.6 Monte Carlo Test for the Decryption Process - TCBC Mode

Table 24 The Monte Carlo Test for the Decryption Process - TCBC Mode

$\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{P}_{\mathrm{j}-1}$

```
    ELSE
        KEY2 }\mp@subsup{\textrm{i}+1}{}{= KEY2 }\mp@subsup{\textrm{K}}{\textrm{i}}{}\oplus\mp@subsup{\textrm{P}}{\textrm{j}}{
```



```
        KEY3 }\mp@subsup{}{\textrm{i}}{= KEY1}\mp@subsup{1}{\textrm{i}}{(})
            KEY3 }\mp@subsup{\textrm{i}+1}{}{= KEY3 }\mp@subsup{\textrm{K}}{\textrm{i}}{}\oplus\mp@subsup{\textrm{P}}{\textrm{j}}{
        ELSE
        KEY3 i+1 = KEY3 i
        CV
        C
}
TMOVS: Check IUT's output for correctness.
```

As summarized in Table 24, the Monte Carlo Test for the TCBC Decryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3, the initialization vector IV, and the ciphertext C variables. All variables consist of 64 bits.
b. Forwards this information to the IUT using Input Type 21.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. If $\mathrm{i}=0$ (if this is the first time through this loop), set the chaining value CV_{0} equal to IV.
b. Record the current values of the output loop number i, KEY1 $1_{i}, K E Y 2_{i}, K E Y 3_{i}$, CV_{0} and C_{0}.
c. Perform the following for $\mathrm{j}=0$ through 9999:
1) Set the input block I_{j} equal to the value of C_{j}.
2) Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{2}$, and KEY_{i} values, process I_{j} through the three DEA stages resulting in the output block O_{j}. This involves processing I_{j} through the DEA stage DEA_{3} in the decrypt state
using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the DEA stage DEA_{2} in the encrypt state using KEY2 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{i}$, resulting in O_{j}.
3) Calculate the plaintext P_{j} by exclusive-ORing O_{j} with CV_{j}.
4) Prepare for loop $\mathrm{j}+1$ by:
a) Assigning $\mathrm{CV}_{\mathrm{j}+1}$ with the current value of C_{j}.
b) Assigning $\mathrm{C}_{\mathrm{j}+1}$ with the current value of P_{j}.
d. Record P_{j}.
e. Forward all recorded information for this loop, as specified in Output Type 6 to the TMOVS.
f. Assign new values to the KEY parameters, KEY1, KEY2, and KEY3 in preparation for the next outer loop. Note $\mathrm{j}=9999$.

The new $\mathrm{KEY} 1_{i+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the P_{j}.

The new $\mathrm{KEY} 2_{i+1}$ calculation is based on the values of the keys. If $\mathrm{KEY} 1_{i}$ and $K E Y 2_{i}$ are independent and $K E Y 3_{i}=K E Y 1_{i}$, or $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ are independent, the new $\mathrm{KEY} 2_{i+1}$ should be calculated by exclusive-ORing the current KEY_{2} with the $\mathrm{P}_{\mathrm{j}-1}$. If $\mathrm{KEY} 1_{\mathrm{i}}=\mathrm{KEY} 2_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 2_{i}$ with the P_{j}.

The new $\mathrm{KEY} 3_{\mathrm{i}+1}$ calculation is also based on the values of the keys. If $\mathrm{KEY} 1_{\mathrm{i}}$, $K E Y 2_{i}$, and $K E Y 3_{\mathrm{i}}$ are independent, the new $\mathrm{KEY} 3_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current KEY_{i} with the $\mathrm{P}_{\mathrm{j}-2}$. If $\mathrm{KEY} 1_{i}$ and KEY_{2} are independent and $\mathrm{KEY} 3_{i}=K E Y 1_{i}$, or if $K E Y 1_{i}=K E Y 2_{i}=K E Y 3_{i}$, the new $K E Y 3_{i+1}$ should be calculated by exclusive-ORing the current $K E Y 3_{i}$ with the P_{j}.
g. Assign a new value to CV_{0} in preparation for the next outer loop. CV_{0} should be assigned the value of the current C_{j}. Note $\mathrm{j}=9999$. $\mathrm{j}=0$.

NOTE -- the new CV should be denoted as CV_{0} to be used for the first pass through the inner loop when
h. Assign a new value to C_{0} in preparation for the next outer loop. C_{0} should be assigned the value of the current P_{j}. Note $j=9999$.

NOTE -- the new C should be denoted as C_{0} to be used for the first pass through the inner loop when $\mathrm{j}=0$.
NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 6.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

5.3 Cipher Block Chaining Mode - Interleaved (TCBC-I)

The IUTs in the Cipher Block Chaining mode - Interleaved (TCBC-I) are validated by successfully completing a series of Known Answer tests and Monte Carlo tests corresponding to the cryptographic processes allowed by the IUT.

The interleaved configuration is intended for systems equipped with multiple DEA processors. By interleaving the data, throughput is improved and propagation delay is minimized by initializing the three individual DEA stages and then simultaneously clocking them. Thus, with each clock cycle, data is processed by each $\mathrm{DEA}_{\mathrm{i}}$ stage (where $\mathrm{i}=1,2,3$) and passed onward to the output buffer or the next stage so that idle $\mathrm{DEA}_{\mathrm{i}}$ stages are minimized.

The processing for each Known Answer test and Monte Carlo Test is broken down into clock cycles T1, T2, T3.... Within each clock cycle, the processing occurring on each active DEA is discussed. For convenience, let KEY1 represent the key used on processor DEA, KEY2 represent the key used on processor DEA_{2}, and KEY3 represent the key used on processor DEA_{3}.

5.3.1 Encryption Process

The process of validating an IUT which implements the TCBC-I mode of operation in the encryption process involves the successful completion of the following six tests:

1. The Variable Plaintext Known Answer Test - TCBC-I mode
2. The Inverse Permutation Known Answer Test - TCBC-I mode
3. The Variable Key Known Answer Test for the Encryption Process - TCBC-I mode
4. The Permutation Operation Known Answer Test for the Encryption Process - TCBC-I mode
5. The Substitution Table Known Answer Test for the Encryption Process - TCBC-I mode
6. The Monte Carlo Test for the Encryption Process - TCBC-I mode

An explanation of the tests follows.

5.3.1. \quad The Variable Plaintext Known Answer Test - TCBC-I Mode

Table 25 The Variable Plaintext Known Answer Test - TCBC-I Mode


```
TEMP3 }
TEMP \(_{2}\) is encrypted by \(\mathrm{DEA}_{3}\) using KEY3, resulting in \(\mathrm{C}_{2}\)
T5: \(\mathrm{TEMP}_{2}\) is encrypted by \(\mathrm{DEA}_{3}\) using KEY3, resulting in \(\mathrm{C} 3_{i}\)
Send i, KEY (representing KEY1, KEY2, and KEY3), IV1, IV2, IV3, I1 \(1_{i}\), \(\mathrm{I} 2_{\mathrm{i}}\), and \(\mathrm{I} 3_{\mathrm{i}}, \mathrm{C1}_{\mathrm{i}}, \mathrm{C2}_{\mathrm{i}}, \mathrm{C} 3_{\mathrm{i}}\)
\(P 1_{i+1}=P 2_{i+1}=P 3_{i+1}=\) basis vector where single " 1 " bit is in position \(\mathrm{i}+1\)
```

\}
TMOVS: Compare results from each loop with known answers. See Table A.5.

Table 25 illustrates the Variable Plaintext Known Answer Test for the TCBC-I mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $I V 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: IV1 $+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=555555555555555$, i.e., IV $2_{\text {hex }}=555555555555$ 5555 . IV3 is computed by the equation IV1 $+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=A A A A A A A A A A A A A A A A$, i.e., $I V 3_{\text {hex }}=A A$ AA AA AA AA AA AA AA.
c. Initializes the 64-bit plaintext values $\mathrm{P}_{1}, \mathrm{P} 2_{1}, \mathrm{P} 3_{1}$ to the basis vector containing a " 1 " in the first bit position and " 0 " in the following 63 positions, i.e., $\mathrm{P} 1_{1 \text { bin }}=\mathrm{P} 2_{1}$ bin $=P 3_{1 \text { bin }}=1000$ 0000000000000000 . The equivalent of this value in hexadecimal notation is 8000 000000000000.
d. Forwards this information to the IUT using Input Type 13.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.
a. At clock cycle T1:

1) Calculate the input block $\mathrm{I1}_{\mathrm{i}}$ by exclusive-ORing $\mathrm{P} 1_{i}$ with IV1.
2) Process $\mathrm{I1}_{\mathrm{i}}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP1 1_{1}.

At clock cycle T2:

1) Calculate the input block $\mathrm{I} 2_{\mathrm{i}}$ by exclusive-ORing $\mathrm{P} 2_{i}$ with IV2.
2) Process I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP2 ${ }_{1}$.
3) Process TEMP 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP1 ${ }_{2}$.

At clock cycle T3:

1) Calculate the input block I_{i} by exclusive-ORing $\mathrm{P} 3_{\mathrm{i}}$ with IV3.
2) Process I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP3 ${ }_{1}$.
3) Process TEMP2 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP2 2_{2}.
4) Process TEMP 1_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in the ciphertext value C_{1}.

At clock cycle T4:

1) Process TEMP 2_{2} through the third DEA stage, denoted DEA_{2}, in the encrypt state using KEY3, resulting in the ciphertext value $\mathrm{C} 2_{\mathrm{i}}$.
2) Process TEMP3 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP3 2_{2}.

At clock cycle T5:

1) Process TEMP3 2_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in the ciphertext value $\mathrm{C3}_{\mathrm{i}}$.
b. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV1, IV2, IV3, $\mathrm{I1}_{\mathrm{i}}, \mathrm{I} 2_{\mathrm{i}}, \mathrm{I} 3_{\mathrm{i}}$, and the resulting $\mathrm{C} 1_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$, to the TMOVS as specified in Output Type 3.
c. Retain $\mathrm{C1}_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$, for use with the Inverse Permutation Known Answer Test for the TCBC-I Mode (Section 5.3.1.2), and, if the IUT supports the decryption process, for use with the Variable Ciphertext Known Answer Test for the TCBC-I Mode (Section 5.3.2.1).
d. Assign a new value to $\mathrm{P}_{1+1}, \mathrm{P}_{2+1}$, and $\mathrm{P} 3_{i+1}$, by setting them equal to the value of a basis vector with a " 1 " bit in position $\mathrm{i}+1$, where $\mathrm{i}+1=2, \ldots, 64$.

NOTE -- This continues until every possible basis vector has been represented by the P variables, i.e., 64 times. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received C1 results to the known values found in Table A.5.

5.3.1.2 The Inverse Permutation Known Answer Test - TCBC-I Mode

Table 26 The Inverse Permutation Known Answer Test - TCBC-I Mode

> T4: TEMP 3_{1} is decrypted by DEA_{2} using KEY2, resulting in TEMP $_{2}$
> TEMP 2_{2} is encrypted by DEA_{3} using KEY3, resulting in $\mathrm{C} 2_{i}$
> T5: $\quad \mathrm{TEMP}_{2}$ is encrypted by DEA_{3} using KEY3, resulting in $\mathrm{C} 3_{i}$

Send i, Key (representing KEY1, KEY2, and KEY3), IV1, IV2, IV3, P1 ${ }_{i}$, $\mathrm{P} 2_{i}, \mathrm{P} 3_{\mathrm{i}}, \mathrm{C} 1_{i}, \mathrm{C} 2_{i}, \mathrm{C} 3_{\mathrm{i}}$
$\mathrm{Pk}_{\mathrm{i}+1}($ where $\mathrm{k}=1 . .3)=$ corresponding $\mathrm{Ck}_{\mathrm{i}+1}$ from TMOVS
\}
TMOVS: Compare C1, C2, and C3 results from each loop with known answers. See Table A. 6 .

C1 should be the set of basis vectors.

Table 26 illustrates the Inverse Permutation Known Answer Test for the TCBC-I mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $\mathrm{IV} 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: $I V 1+R_{1} \bmod 2^{64}$ where $R_{1}=5555555555555555$, i.e., $I V 2_{\text {hex }}=555555555555$ 5555 . IV3 is computed by the equation IV1 $+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=\mathrm{AAAAAAAAAAAAAAAA}$, i.e., $I V 3_{\text {hex }}=\mathrm{AA} A A$ AA AA AA AA AA AA.
c. Initializes the 64-bit plaintext values P1, P2, P3 to the 64-bit ciphertext values C1, C2, and C3 respectively, obtained from the Variable Plaintext Known Answer Test.
d. Forwards this information to the IUT using Input Type 15.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.
a. At clock cycle T1:

1) Calculate the input block $\mathrm{I1}_{\mathrm{i}}$ by exclusive-ORing $\mathrm{P} 1_{i}$ with IV1.
2) Process $\mathrm{I1}_{\mathrm{i}}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP1 1_{1}.

At clock cycle T2:

1) Calculate the input block $\mathrm{I} 2_{\mathrm{i}}$ by exclusive-ORing $\mathrm{P} 2_{i}$ with IV2.
2) Process $\mathrm{I} 2_{i}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP2 ${ }_{1}$.
3) Process TEMP 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP1 1_{2}.

At clock cycle T3:

1) Calculate the input block I_{i} by exclusive-ORing $\mathrm{P} 3_{\mathrm{i}}$ with IV3.
2) Process I_{3} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP3 ${ }_{1}$.
3) Process TEMP2 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP2 2_{2}.
4) Process TEMP 1_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in the ciphertext value C_{i}.

At clock cycle T4:

1) Process TEMP 2_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in the ciphertext value $\mathrm{C} 2_{i}$.
2) Process TEMP3 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP3 ${ }_{2}$.

At clock cycle T5:

1) Process TEMP3 2_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in the ciphertext value $\mathrm{C} 3_{i}$.
b. Forward the current values of the loop number i, KEY (which represents KEY1, KEY2, and KEY3), IV1, IV2, IV3, $\mathrm{P} 1_{i}, \mathrm{P} 2_{\mathrm{i}}$, and $\mathrm{P} 3_{\mathrm{i}}$, and the resulting $\mathrm{C} 1_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and C_{i}, to the TMOVS as specified in Output Type 3.
c. Assign a new value to the plaintext values, $\mathrm{P} 1_{i+1}, \mathrm{P} 2_{i+1}$, and $\mathrm{P} 3_{i+1}$, by setting them equal to the corresponding output from the TMOVS.

NOTE -- This processing continues until all ciphertext values from the Variable Plaintext Known Answer Test have been used as input. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received $\mathrm{C} 1, \mathrm{C} 2$, and C3 results to known values. The C1 values should be the set of basis vectors. See Table A. 6.

5.3.1.3 The Variable Key Known Answer Test for the Encryption Process -TCBC-I Mode

Table 27 The Variable Key Known Answer Test for the Encryption Process - TCBC-I Mode

TMOVS:	Initialize		$K E Y 1_{1}=\mathrm{KEY}_{1}=\mathrm{KEY}_{1}=8001010101010101 \text { (odd parity }$
			IV1=0000000000000000
			$\mathrm{IV} 2=5555555555555555$
			IV3 $=$ AAAAAAAAAAAAAAAA
			$\mathrm{P} 1=\mathrm{P} 2=\mathrm{P} 3=0000000000000000$
	Send		KEY_{1} (representing $\mathrm{KEY} 1_{1}, \mathrm{KEY}_{1}$, and $\mathrm{KEY} 3_{1}$), IV1, IV2, IV3, P1, P2, P3
IUT:	FOR i $=1$ to 64		
	IF (i mod $8 \neq 0$) \{process every bit except parity bits \}		
	Perform Triple DES:	T1: $\mathrm{I} 1_{\mathrm{i}}=\mathrm{P} 1 \oplus \mathrm{IV} 1$	
			$\mathrm{I} 1_{\mathrm{i}}$ is read into TDEA and is encrypted by DEA_{1} using $K E Y 1_{i}$, resulting in TEMP1 1_{1}
		T2:	$\mathrm{I} 2 \mathrm{i}=\mathrm{P} 2 \oplus \mathrm{IV} 2$
			$\mathrm{I} 2_{\mathrm{i}}$ is read into TDEA and is encrypted by DEA_{1} using KEY1 ${ }_{\mathrm{i}}$, resulting in TEMP2 ${ }_{1}$
			TEMP 1_{1} is decrypted by DEA_{2} using $K E Y 2_{i}$, resulting in TEMP $_{1}$
		T3:	$\mathrm{I}_{\mathrm{i}}=\mathrm{P} 3 \oplus \mathrm{IV} 3$
			$\mathrm{I} 3_{\mathrm{i}}$ is read into TDEA and is encrypted by DEA_{1} using KEY 1_{i}, resulting in TEMP3 ${ }_{1}$
			TEMP 2_{1} is decrypted by DEA_{2} using $\mathrm{KEY} 2_{i}$, resulting in

```
TEMP2 }
TEMP \(_{2}\) is encrypted by \(\mathrm{DEA}_{3}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in \(\mathrm{Cl}_{\mathrm{i}}\)
T4: TEMP3 \(_{1}\) is decrypted by \(\mathrm{DEA}_{2}\) using \(\mathrm{KEY} 2_{\mathrm{i}}\), resulting in TEMP3 \(_{2}\)
TEMP \(_{2}\) is encrypted by \(\mathrm{DEA}_{3}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in \(\mathrm{C} 2_{\mathrm{i}}\)
T5: \(\quad \mathrm{TEMP}_{2}\) is encrypted by \(\mathrm{DEA}_{3}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in \(\mathrm{C}_{\mathrm{i}}\)
Send \(\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{1}{ }_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\) ), IV1, IV2, IV3, P1, P2, P3, C1 \(1_{i}, \mathrm{C} 2_{\mathrm{i}}, \mathrm{C} 3_{\mathrm{i}}\)
KEY \(1_{i+1}=\) KEY \(2_{i+1}=K E Y 3_{i+1}=\) vector consisting of " 0 " in every significant bit position except for a single "1" bit in position \(i+1\).
NOTE -- the parity bits are " 0 " or " 1 " to set odd parity.
\}
\}
```

TMOVS: Compare results of the 3 triple DES encryptions per 56 different keys with known answers. See Table A.11.

Table 27 illustrates the Variable Key Known Answer Test for the Encryption Process for the TCBC-I mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}, \mathrm{KEY}_{1}$ to contain " 0 " in every significant bit except for a " 1 " in the first position, i.e., the 64 -bit $\mathrm{KEY} 1_{1 \text { bin }}=$ $K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001$ 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or" 1 " to get odd parity.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $I V 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: $\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=5555555555555555$, i.e., $\mathrm{IV} 2_{\text {hex }}=555555555555$

5555 . IV 3 is computed by the equation IV $1+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=A A A A A A A A A A A A A A A A$, i.e., $I V 3_{\text {hex }}=A A$ AA AA AA AA AA AA AA.
c. Initializes the P parameters $\mathrm{P} 1, \mathrm{P} 2$, and P 3 to the constant hexadecimal value 0 , i.e., $\mathrm{P} 1_{\text {hex }}=\mathrm{P} 2_{\text {hex }}=\mathrm{P} 3_{\text {hex }}=0000000000000000$.
d. Forwards this information to the IUT using Input Type 13.
2. The IUT should perform the following for $\mathrm{i}=1$ through 56:

NOTE -- 56 is the number of significant bits in a TDES key.
NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.
a. At clock cycle T1:

1) Calculate the input block $\mathrm{I} 1_{i}$ by exclusive-ORing P1 with IV1.
2) Process $I 1_{i}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP_{1}.

At clock cycle T2:

1) Calculate the input block $I 2_{i}$ by exclusive-ORing P2 with IV2.
2) Process $I 2_{i}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 1_{i}, resulting in intermediate value TEMP2 ${ }_{1}$.
3) Process TEMP 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP1 1_{2}.

At clock cycle T3:

1) Calculate the input block I_{i} by exclusive-ORing P3 with IV3.
2) Process I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 ${ }_{i}$, resulting in intermediate value TEMP3 $_{1}$.
3) Process TEMP 2_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP2 2_{2}.
4) Process TEMP 1_{2} through the third DEA stage, denoted DEA $_{3}$, in the encrypt state using $K E Y 3_{i}$, resulting in the ciphertext value Cl_{i}.

At clock cycle T4:

1) Process TEMP 2_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY_{3}, resulting in the ciphertext value $\mathrm{C} 2_{\mathrm{i}}$.
2) Process TEMP 3_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY 2_{i}, resulting in intermediate value TEMP3 ${ }_{2}$.

At clock cycle T5:

1) Process TEMP3 3_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY3}_{\mathrm{i}}$, resulting in the ciphertext value $\mathrm{C3}_{\mathrm{i}}$.
b. Forward the current values of the loop number i, $\mathrm{KEY}_{\mathrm{i}}$ (which represents $\mathrm{KEY1}_{\mathrm{i}}$, $K E Y 2_{i}$, and $\mathrm{KEY} 3_{\mathrm{i}}$), IV1, IV2, IV3, P1, P2, and P3, and the resulting $\mathrm{C}_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and C_{3}, to the TMOVS as specified in Output Type 3.
c. If the IUT supports the decryption process, retain $\mathrm{C} 1, \mathrm{C} 2$, and C 3 for use with the Variable KEY Known Answer Test for the Decryption Process for the TCBC-I Mode (Section 5.3.2.3).
d. Assign a new value to $\mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$, by setting them equal to the vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position $i+1$. The parity bits may contain " 1 " or " 0 " to make odd parity.

NOTE -- The above processing continues until every significant basis vector has been represented by the KEY parameters, i.e., 56 times. The output from the IUT should consist of 56 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values found in Table A.11.

5.3.1.4 Permutation Operation Known Answer Test for the Encryption Process - TCBC-I Mode

Table 28 The Permutation Operation Known Answer Test for the Encryption Process -TCBC-I Mode

Table 28 illustrates the Permutation Operation Known Answer Test for the Encryption Process for the TCBC-I mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY} 1_{1}, \mathrm{KEY}_{1}, \mathrm{KEY}_{1}$ to the 32 constant KEY values from Table A. 12.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $\mathrm{IV} 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: $\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=5555555555555555$, i.e., $\mathrm{IV} 2_{\text {hex }}=555555555555$ 5555 . IV3 is computed by the equation IV1 $+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA, i.e., $I V 3_{\text {hex }}=$ AA AA AA AA AA AA AA AA.
c. Initializes the P parameters $\mathrm{P} 1, \mathrm{P} 2$, and P 3 to the constant hexadecimal value 0 , i.e., $\mathrm{P} 1_{\text {hex }}=\mathrm{P} 2_{\text {hex }}=\mathrm{P} 3_{\text {hex }}=0000000000000000$.
d. Forwards this information to the IUT using Input Type 18.
2. The IUT should perform the following for $\mathrm{i}=1$ through 32 :

NOTE -- that the processing for each clock cycle Ti is displayed.
a. At clock cycle T1:

1) Calculate the input block $\mathrm{I1}_{\mathrm{i}}$ by exclusive-ORing P1 with IV1.
2) Process $\mathrm{I1}_{\mathrm{i}}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in intermediate value TEMP1 ${ }_{1}$.

At clock cycle T2:

1) Calculate the input block $\mathrm{I} 2_{\mathrm{i}}$ by exclusive-ORing P2 with IV2.
2) Process I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP2 ${ }_{1}$.
3) Process TEMP 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value $\mathrm{TEMP1} 1_{2}$.

At clock cycle T3:

1) Calculate the input block I_{i} by exclusive-ORing P3 with IV3.
2) Process I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY 1_{i}, resulting in intermediate value TEMP 3_{1}.
3) Process TEMP 2_{1} through the second DEA stage, denoted DEA 2 , in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2 2_{2}.
4) Process TEMP 1_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY3}_{\mathrm{i}}$, resulting in the ciphertext value $\mathrm{C1}_{\mathrm{i}}$.
5) Set ciphertextl $\mathrm{C} 1_{\mathrm{i}}$ equal to the value of $\mathrm{O} 1_{i}$.

At clock cycle T4:

1) Process TEMP2 2 through the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in the ciphertext value C_{i}.
2) Process TEMP3 3_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP_{2}.

At clock cycle T5:

1) Process TEMP3 2_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in the ciphertext value $\mathrm{C} 3_{\mathrm{i}}$.
b. Forward the current values of the loop number i, KEY (which represents KEY1, KEY2, and KEY3), IV1, IV2, IV3, $\mathrm{P}_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}$, and $\mathrm{P} 3_{\mathrm{i}}$, and the resulting $\mathrm{C} 1_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and C_{i}, to the TMOVS as specified in Output Type 3.
c. If the IUT supports the decryption process, retain $\mathrm{C} 1_{i}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$ for use with the Permutation Operation Known Answer Test for the Decryption Process for the TCBC-I Mode (Section 5.3.2.4).
d. Assign a new value to $\mathrm{KEY1}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$, by setting them equal to the next key supplied by the TMOVS.

NOTE -- The above processing continues until all 32 KEY values are processed. The output from the IUT should consist of 32 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.12.

5.3.1.5 Substitution Table Known Answer Test for the Encryption Process -TCBC-I Mode

Table 29 The Substitution Table Known Answer Test for the Encryption Process -TCBC-I Mode


```
    TEMP2 }\mp@subsup{1}{1}{}\mathrm{ is decrypted by DEA }\mp@subsup{2}{2}{}\mathrm{ using KEY2 }\mp@subsup{2}{\textrm{i}}{2}\mathrm{ , resulting in
        TEMP2 }\mp@subsup{2}{2}{
    TEMP1 1 is encrypted by DEA }\mp@subsup{\}{3}{}\mathrm{ using KEY3 i, resulting in C1 }\mp@subsup{1}{i}{
    T4: TEMP3 3 is decrypted by DEA }\mp@subsup{2}{2}{}\mathrm{ using KEY }\mp@subsup{2}{\textrm{i}}{2}\mathrm{ , resulting in
        TEMP3}\mp@subsup{2}{2}{
    TEMP2}\mp@subsup{2}{2}{}\mathrm{ is encrypted by DEA 
    T5: TEMP3 3 is encrypted by DEA }\mp@subsup{3}{3}{}\mathrm{ using KEY3 i, resulting in }\textrm{C}
    Send i, KEY (representing KEY1 }\mp@subsup{}{\textrm{i}}{\prime},\mp@subsup{\textrm{KEY}}{\textrm{i}}{\mathbf{i}}\mp@subsup{\mathrm{ , and KEY3 }}{\textrm{i}}{\prime}\mathrm{ ), IV1, IV2, IV3,
        P1 1, P2 i, P3 i, C1 i, C2 i, C3 3
    KEY1 i+1 = KEY2 }\mp@subsup{i}{i+1}{}=\mp@subsup{K}{NEY3 }{i+1}\mp@code{= KEY i+1 from TMOVS
    P1}\mp@subsup{1}{i+1}{}=P\mp@subsup{P}{i+1}{}=P\mp@subsup{3}{i+1}{}=\mathrm{ corresponding P}\mp@subsup{\textrm{P}}{\textrm{i}+1}{}\mathrm{ from TMOVS
}
```

TMOVS: Compare results from each loop with known answers. See Table A.8.

Table 29 illustrates the Substitution Table Known Answer Test for the Encryption Process of the TCBC-I mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, KEY3 to the 19 constant KEY values from Table A.8.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $\mathrm{IV} 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: IV $1+R_{1} \bmod 2^{64}$ where $R_{1}=5555555555555555$, i.e., IV $2_{\text {hex }}=555555555555$ 5555 . IV3 is computed by the equation IV1 $+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=\mathrm{AAAAAAAAAAAAAAAA}$, i.e., $\mathrm{IV} 3_{\text {hex }}=\mathrm{AA}$ AA AA AA AA AA AA AA.
c. Initializes the P parameters $\mathrm{P} 1, \mathrm{P} 2$, and P 3 to the 19 constant P values from Table A. 8 .
d. Forwards this information to the IUT using Input Type 19.
2. The IUT should perform the following for $\mathrm{i}=1$ through 19:

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.
a. At clock cycle T1:

1) Calculate the input block $\mathrm{I1}_{\mathrm{i}}$ by exclusive-ORing $\mathrm{P} 1_{\mathrm{i}}$ with IV1.
2) Process $I 1_{i}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 1_{i}, resulting in intermediate value TEMP 1_{1}.

At clock cycle T2:

1) Calculate the input block $\mathrm{I} 2_{\mathrm{i}}$ by exclusive-ORing $\mathrm{P} 2_{\mathrm{i}}$ with IV2.
2) Process I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP2 ${ }_{1}$.
3) Process TEMP 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY 2_{i}, resulting in intermediate value TEMP1 1_{2}.

At clock cycle T3:

1) Calculate the input block $\mathrm{I} 3_{\mathrm{i}}$ by exclusive-ORing $\mathrm{P} 3_{i}$ with IV3.
2) Process I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP_{1}.
3) Process TEMP2 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP2 ${ }_{2}$.
4) Process TEMP 1_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in the ciphertext value $\mathrm{C} 1_{i}$..

At clock cycle T4:

1) Process TEMP 2_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY_{i}, resulting in the ciphertext value $\mathrm{C} 2_{i}$.
2) Process TEMP3 1_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP_{2}.

At clock cycle T5:

1) Process TEMP3 2_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using $K E Y 3_{i}$, resulting in the ciphertext value $\mathrm{C} 3_{i}$.
b. Forward the current values of the loop number i, $\mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY}_{\mathrm{i}}$, KEY2 ${ }_{i}$, and KEY3 3_{i}, IV1, IV2, IV3, $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}, \mathrm{P} 3_{\mathrm{i}}$, and the resulting $\mathrm{C} 1_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$, to the TMOVS as specified in Output Type 3.
c. If the IUT supports the decryption process, retain $\mathrm{C} 1, \mathrm{C} 2$, and C 3 for use with the Substitution Table Known Answer Test for the Decryption Process for the TCBCI Mode (Section 5.3.2.5).
d. Assign a new value to $\mathrm{KEY} 1_{\mathrm{i}+1}, \mathrm{KEY} 2_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$ by setting them equal to the next key supplied by the TMOVS.
e. Assign a new value to $\mathrm{P}_{\mathrm{i}+1}, \mathrm{P} 2_{\mathrm{i}+1}$, and $\mathrm{P} 3_{\mathrm{i}+1}$ by setting them equal to the corresponding P supplied by the TMOVS.

NOTE -- The above processing continues until all 19 KEY-P values are processed. The output from the IUT should consist of 19 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.8.

5.3.1.6 Monte Carlo Test for the Encryption Process - TCBC-I Mode

Table 30 The Monte Carlo Test for the Encryption Process - TCBC-I Mode

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
TMOVS: \\
IUT:
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Initialize \\
Send
\end{tabular}} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
\& \mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \mathrm{KEY}_{0}, \mathrm{IV} 1, \mathrm{IV} 2, \mathrm{IV} 3, \mathrm{P} 1_{0}, \mathrm{P} 2_{0}, \mathrm{P} 3_{0} \\
\& \mathrm{KEY} 1_{0}, \mathrm{KEY} 2_{0}, \mathrm{KEY}_{3}, \mathrm{IV} 1, \mathrm{IV} 2, \mathrm{IV} 3, \mathrm{P} 1_{0}, \mathrm{P} 2_{0}, \mathrm{P} 3_{0}
\end{aligned}
\]}} \\
\hline \& \& \& \\
\hline \& \multicolumn{3}{|l|}{FOR i \(=0\) TO 399} \\
\hline \multicolumn{4}{|c|}{If (i==0)} \\
\hline \multicolumn{4}{|r|}{FOR k = 1 TO 3} \\
\hline \multicolumn{4}{|r|}{\(\mathrm{CVk}_{0}=\mathrm{IVk}\)} \\
\hline \& \& d i, \& \(\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}, \mathrm{KEY} 3_{\mathrm{i}}, \mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}, \mathrm{CV} 3_{0}, \mathrm{P} 1_{0}, \mathrm{P} 2_{0}, \mathrm{P} 3_{0}\) TO 9,999 \\
\hline \multicolumn{4}{|c|}{\{} \\
\hline \multicolumn{2}{|r|}{Perform Triple DES:} \& T1:
T2:

T3: \& | $\mathrm{I} 1_{\mathrm{j}}=\mathrm{P} 1_{\mathrm{j}} \oplus \mathrm{CV} 1_{\mathrm{j}}$ |
| :--- |
| $\mathrm{I} 1_{\mathrm{j}}$ is read into TDEA and is encrypted by DEA_{1} using KEY 1_{i}, resulting in TEMP 1_{1} $\mathrm{I} 2_{\mathrm{j}}=\mathrm{P} 2_{\mathrm{j}} \oplus \mathrm{CV} 2_{\mathrm{j}}$ |
| I2 2_{j} is read into TDEA and is encrypted by DEA_{1} using KEY 1_{i}, resulting in TEMP 2_{1} |
| TEMP 1_{1} is decrypted by DEA_{2} using $K E Y 2_{i}$, resulting in TEMP 1_{2} $\mathrm{I}_{\mathrm{j}}=\mathrm{P} 3_{\mathrm{j}} \oplus \mathrm{CV} 3_{\mathrm{j}}$ |
| $\mathrm{I} 3_{\mathrm{j}}$ is read into TDEA and is encrypted by DEA_{1} using KEY 1_{i}, resulting in TEMP 3_{1} |
| TEMP 2_{1} is decrypted by DEA_{2} using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in TEMP 2_{2} |
| TEMP_{2} is encrypted by DEA_{3} using KEY_{3}, resulting in $\mathrm{C} 1_{\mathrm{j}}$ |

\hline
\end{tabular}

T4: TEMP $_{1}$ is decrypted by DEA_{2} using $\mathrm{KEY} 2_{i}$, resulting in TEMP $_{2}$

TEMP 2_{2} is encrypted by DEA_{3} using KEY_{3}, resulting in $\mathrm{C} 2_{\mathrm{j}}$

T5: \quad TEMP $_{2}$ is encrypted by DEA_{3} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in $\mathrm{C} 3_{\mathrm{j}}$

IF ($\mathrm{j}==0$)

$$
\begin{aligned}
& \text { FOR } \mathrm{k}=1 \text { TO } 3 \\
& \mathrm{Pk}_{\mathrm{j}+1}=\mathrm{CVk}_{0}
\end{aligned}
$$

ELSE

$$
\text { FOR } \mathrm{k}=1 \mathrm{TO} 3
$$

$$
\mathrm{Pk}_{\mathrm{j}+1}=\mathrm{Ck}_{\mathrm{j}-1}
$$

FOR $k=1$ TO 3

$$
\mathrm{CVk}_{\mathrm{j}+1}=\mathrm{Ck}_{\mathrm{j}}
$$

\}
$\operatorname{Record} \mathrm{C1}_{\mathrm{j}}, \mathrm{C}_{\mathrm{j}}, \mathrm{C3}_{\mathrm{j}}$
Send i, KEY $1_{i}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}, \mathrm{CV} 3_{0}, \mathrm{P} 1_{0}, \mathrm{P} 2_{0}, \mathrm{P} 3_{0}, \mathrm{C} 1_{\mathrm{j}}, \mathrm{C} 2_{\mathrm{j}}$, $\mathrm{C} 3_{\mathrm{j}}$
$K E Y 1_{i+1}=K E Y 1_{\mathrm{i}} \oplus \mathrm{C} 1_{\mathrm{j}}$
IF $\left(K E Y 1_{i}\right.$ and $K E Y 2_{i}$ are independent and $\left.K E Y 3_{i}=K E Y 1_{i}\right)$ or $\left(K E Y 1_{i}\right.$, $K E Y 2_{i}$, and $K E Y 3_{i}$ are independent)
$\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{C} 2_{\mathrm{j}-1}$

ELSE

$$
\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{C1}_{\mathrm{j}}
$$

$\operatorname{IF}\left(K E Y 1_{i}=K E Y 2_{i}=K E Y 3_{i}\right)$ or $\left(K E Y 1_{i}\right.$ and $K E Y 2_{i}$ are independent and $\left.\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}\right)$

$$
\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{j}}
$$

```
    ELSE
    KEY3 }\mp@subsup{\textrm{i}+1}{}{= KEY3}\mp@subsup{\textrm{K}}{\textrm{i}}{}\oplus\mp@subsup{\textrm{C3}}{\textrm{j}-2}{
    FOR k = 1 TO 3
    {
    Pk
    CVk
    }
}
```

TMOVS: Check IUT's output for correctness.

As summarized in Table 30, the Monte Carlo Test for the TCBC-I Encryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3, the initialization vectors IV1, IV2, and IV3, and the plaintext variables P1, P2, and P3. The P, IV, and KEY parameters consist of 64 bits each. IV2 is assigned the value of IV1 $+\mathrm{R}_{1} \bmod$ 2^{64} where $\mathrm{R}_{1}=5555555555555555$. IV3 is assigned the value of IV $1+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA.
b. Forwards this information to the IUT using Input Type 22.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. If $\mathrm{i}=0$ (if this is the first time through this loop), set the chaining value $\mathrm{CV} 1_{0}$ equal to the IV1, $\mathrm{CV} 2_{0}$ equal to the IV2, and $\mathrm{CV} 3_{0}$ equal to the IV3.
b. Record the current values of the output loop number i, KEY1 $1_{i}, K E Y 2_{i}, K E Y 3_{i}$, $\mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}, \mathrm{CV}_{3}$, and $\mathrm{P} 1_{0}, \mathrm{P} 2_{0}, \mathrm{P} 3_{0}$.
c. Perform the following for $\mathrm{j}=0$ through 9999:

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.

1) At clock cycle T1:
a) Calculate the input block I_{j} by exclusive-ORing $\mathrm{P} 1_{\mathrm{j}}$ with $\mathrm{CV} 1_{\mathrm{j}}$.
b) Process $\mathrm{I1}_{\mathrm{j}}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP1 1_{1}.

At clock cycle T2:
a) Calculate the input block $\mathrm{I} 2_{\mathrm{j}}$ by exclusive-ORing $\mathrm{P} 2_{\mathrm{j}}$ with $\mathrm{CV} 2_{j}$.
b) Process I_{j} through the first DEA stage, denoted DEA_{1}, in the encrypt state using $\mathrm{KEY} 1_{i}$, resulting in intermediate value TEMP 2_{1}.
c) Process TEMP1 1_{1} through the second DEA stage, denoted DEA ${ }_{2}$, in the decrypt state using $K E Y 2_{i}$, resulting in intermediate value TEMP1 ${ }_{2}$.

At clock cycle T3:
a) Calculate the input block $\mathrm{I} 3_{j}$ by exclusive-ORing $\mathrm{P} 3_{\mathrm{j}}$ with $\mathrm{CV} 3_{\mathrm{j}}$.
b) Process $I 3_{j}$ through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 1_{i}, resulting in intermediate value TEMP3 ${ }_{1}$.
c) Process TEMP2 2_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP2 2 .
d) Process TEMP1 1_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using $K E Y 3_{i}$, resulting in the ciphertext value $\mathrm{C1}_{\mathrm{j}}$.

At clock cycle T4:
a) Process TEMP3 3_{1} through the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP3 ${ }_{2}$.
b) Process TEMP2 2_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY} 3_{\mathrm{i}}$, resulting in the ciphertext value $\mathrm{C} 2_{\mathrm{j}}$.

At clock cycle T5:
a) Process TEMP3 3_{2} through the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in the ciphertext value $\mathrm{C} 3_{\mathrm{j}}$.
2) Prepare for loop $\mathrm{j}+1$ by doing the following:
a) If the inner loop being processed is the first loop, i.e., $\mathrm{j}=0$, assign $\mathrm{P} 1_{\mathrm{j}+1}, \mathrm{P} 2_{\mathrm{j}+1}$, and $\mathrm{P} 3_{\mathrm{j}+1}$, with the current value of $\mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}$, and $\mathrm{CV} 3_{0}$, respectively. Otherwise, assign $\mathrm{P1}_{\mathrm{j}+1}$ with $\mathrm{C} 1_{\mathrm{j}-1}, \mathrm{P} 2_{\mathrm{j}+1}$ with $\mathrm{C} 2_{\mathrm{j}-1}$, and $\mathrm{P} 3_{\mathrm{j}+1}$ with $\mathrm{C} 3_{\mathrm{j}-1}$.
b) Assign $\mathrm{CV} 1_{\mathrm{j}+1}, \mathrm{CV} 2_{\mathrm{j}+1}, \mathrm{CV}_{\mathrm{j}+1}$, with the current value of $\mathrm{C} 1_{\mathrm{j}}, \mathrm{C} 2_{\mathrm{j}}$, $C 3_{j}$, respectively.
d. Record the $\mathrm{C} 1_{\mathrm{j}}, \mathrm{C} 2_{\mathrm{j}}, \mathrm{C} 3_{\mathrm{j}}$.
e. Forward all recorded information from this loop, as specified in Output Type 4, to the TMOVS.
f. Assign new values to the KEY parameters, KEY1, KEY2, and KEY3 in preparation for the next outer loop. Note $\mathrm{j}=9999$.

The new $\mathrm{KEY} 1_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 1_{i}$ with the $\mathrm{C1}_{\mathrm{j}}$.

The new $\mathrm{KEY} 2_{\mathrm{i}+1}$ calculation is based on the values of the keys. If $\mathrm{KEY} 1_{\mathrm{i}}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY} 3_{i}=\mathrm{KEY} 1_{\mathrm{i}}$, or $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ are independent, the new $\mathrm{KEY} 2_{i+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY} 2_{\mathrm{i}}$ with the $\mathrm{C} 2_{\mathrm{j}-1}$. If $K E Y 1_{i}=K E Y 2_{i}=K E Y 3_{i}$, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 2_{i}$ with the C_{j}.

The new $\mathrm{KEY}_{\mathrm{i}+1}$ calculation is also based on the values of the keys. If $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ are independent, the new $\mathrm{KEY}_{i_{i+1}}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the $\mathrm{C}_{\mathrm{j}-2}$. If $\mathrm{KEY} 1_{\mathrm{i}}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY} 3_{i}=\mathrm{KEY} 1_{i}$, or if $K E Y 1_{i}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY}_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the $\mathrm{C1}_{\mathrm{j}}$.
g. Assign new values to $\mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}$, and $\mathrm{CV} 3_{0}$, in preparation for the next outer loop. $\mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}$, and $\mathrm{CV} 3_{0}$ should be assigned the value of the current $\mathrm{C} 1_{\mathrm{j}}, \mathrm{C} 2_{\mathrm{j}}$, and C_{j}.

NOTE -- the new CV should be denoted as CV_{0} because this value is used for the first pass through the inner loop when $\mathrm{j}=0$.
h. Assign a new value to $\mathrm{P}_{0}, \mathrm{P}_{2}$, and P_{0} in preparation for the next output loop. $\mathrm{P} 1_{0}$ should be assigned the value of the $\mathrm{C}_{\mathrm{j}-1} . \mathrm{P} 2_{0}$ should be assigned the value of the $\mathrm{C} 2_{\mathrm{j}-1}$, and $\mathrm{P} 3_{0}$ should be assigned the value of the $\mathrm{C} 3_{\mathrm{j}-1}$.

NOTE -- the new P variables, $\mathrm{P} 1, \mathrm{P} 2$, and P 3 should be denoted as $\mathrm{P} 1_{0}, \mathrm{P} 2_{0}$, and $\mathrm{P} 3_{0}$, respectively, to be used for the first pass through the inner loop when $\mathrm{j}=0$.

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 4.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values.

5.3.2 Decryption Process

The process of validating an IUT for the TCBC-I mode which implements the decryption process involves the successful completion of the following six tests:

1. The Variable Ciphertext Known Answer Test - TCBC-I mode
2. The Initial Permutation Known Answer Test - TCBC-I mode
3. The Variable Key Known Answer Test for the Decryption Process - TCBC-I mode
4. The Permutation Operation Known Answer Test for the Decryption Process - TCBC-I mode
5. The Substitution Table Known Answer Test for the Decryption Process - TCBC-I mode
6. The Monte Carlo Test for the Decryption Process - TCBC-I mode

An explanation of the tests follows.

5.3.2.1 The Variable Ciphertext Known Answer Test - TCBC-I Mode

Table 31 The Variable Ciphertext Known Answer Test - TCBC-I Mode

TMOVS:	Initialize		KEY1 $=$ KEY2 $=$ KEY3 $=0101010101010101$ (odd parity set)
			IV1=0000000000000000
			IV2 $=5555555555555555$ (based on specifications in ANSI X9.52-1998)
			IV3 $=$ AAAAAAAAAAAAAAAA (based on specifications in ANSI X9.52 - 1998)
	Send		KEY (representing KEY1, KEY2, and KEY3), IV1,IV2,IV3
	If encryption is not supported by the IUT:		
	Initialize		$\mathrm{Ck}_{\mathrm{i}}($ where $\mathrm{k}=1 . .3$ and $\mathrm{i}=1 . .64)=\mathrm{Ck}$ values in Table A. 5
	Send		$\mathrm{C} 1_{1}, \mathrm{C} 1_{2}, \ldots, \mathrm{C} 1_{64}, \mathrm{C} 2_{1}, \mathrm{C} 2_{2}, \ldots, \mathrm{C} 2_{64} \mathrm{C} 3_{1}, \mathrm{C} 3_{2}, \ldots, \mathrm{C} 3_{64}$
IUT:	If encryption is supported:		
	Initialize		$\mathrm{C} 1_{1}, \mathrm{C} 2_{1}, \mathrm{C} 3_{1}=$ corresponding values from output of Variable Plaintext Known Answer Test.
	Otherwise, use the corresponding values received from the TMOVS.		
	FOR $\mathrm{i}=1$ to 64		
	Process Triple DES:	T1: $\quad \mathrm{I} 1_{\mathrm{i}}=\mathrm{C} 1_{\mathrm{i}}$	
			I_{1} is read into TDEA and is decrypted by DEA_{3} using KEY3, resulting in TEMP1 1_{1}
		T2:	$\mathrm{I} 2_{\mathrm{i}}=\mathrm{C} 2_{\mathrm{i}}$
			$\mathrm{I} 2_{\mathrm{i}}$ is read into TDEA and is decrypted by DEA_{3} using KEY3, resulting in TEMP2 ${ }_{1}$
			TEMP1 1_{1} is encrypted by DEA_{2} using KEY2, resulting in TEMP $_{12}$
		T3:	$\mathrm{I} 3_{\mathrm{i}}=\mathrm{C} 3_{\mathrm{i}}$

$$
\begin{aligned}
& \mathrm{I}_{3} \text { is read into TDEA and is decrypted by } \mathrm{DEA}_{3} \text { using KEY3, } \\
& \text { resulting in TEMP3 }{ }_{1} \\
& \text { TEMP2 } 2_{1} \text { is encrypted by } \mathrm{DEA}_{2} \text { using KEY2, resulting in } \\
& \text { TEMP }_{2} \\
& \text { TEMP } 1_{2} \text { is decrypted by } \mathrm{DEA}_{1} \text { using KEY1, resulting in } \mathrm{O}_{\mathrm{i}} \\
& \mathrm{Pl}_{\mathrm{i}}=\mathrm{O}_{\mathrm{i}} \oplus \mathrm{IV} 1 \\
& \text { T4: } \mathrm{TEMP}_{1} \text { is encrypted by } \mathrm{DEA}_{2} \text { using KEY2, resulting in } \\
& \text { TEMP }_{2} \\
& \text { TEMP } 2_{2} \text { is decrypted by } \mathrm{DEA}_{1} \text { using KEY1, resulting in } \mathrm{O}_{2} \\
& \mathrm{P} 2_{\mathrm{i}}=\mathrm{O} 2_{\mathrm{i}} \oplus \mathrm{IV} 2 \\
& \text { T5: } \quad \mathrm{TEMP}_{2} \text { is decrypted by } \mathrm{DEA}_{1} \text { using KEY1, resulting in } \mathrm{O} 3_{i} \\
& \mathrm{P} 3_{\mathrm{i}}=\mathrm{O} 3_{\mathrm{i}} \oplus \mathrm{IV} 3 \\
& \text { Send i, KEY (representing KEY1, KEY2, and KEY3), IV1, IV2, IV3, } \\
& \mathrm{C} 1_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}, \mathrm{C} 3_{\mathrm{i}}, \mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}, \mathrm{P} 3_{\mathrm{i}} \\
& \text { If encryption is supported: } \\
& \mathrm{Ck}_{\mathrm{i}+1} \text { (where } \mathrm{k}=1 . .3 \text {) }=\text { corresponding } \mathrm{Ck}_{\mathrm{i}+1} \text { from output of Variable } \\
& \text { Plaintext Known Answer Test } \\
& \text { \} } \\
& \text { TMOVS: Compare results from each loop with known answers. Should be the set of basis }
\end{aligned}
$$ vectors.

Table 31 illustrates the Variable Ciphertext Known Answer Test for the TCBC-I mode of operation.

1. The TMOVS:

a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $I V 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation:

$$
\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64} \text { where } \mathrm{R}_{1}=5555555555555555 \text {, i.e., } \mathrm{IV} 2_{\text {hex }}=555555555555
$$

$$
5555 \text {. IV3 is computed by the equation IV1 }+\mathrm{R}_{2} \bmod 2^{64} \text { where }
$$

$$
\mathrm{R}_{2}=\mathrm{AAAAAAAAAAAAAAAA}, \text { i.e., } \mathrm{IV} 3_{\text {hex }}=\mathrm{AA} A A \mathrm{AA} A A \text { AA AA AA AA. }
$$

c. If the IUT does not support encryption, the 64 constant ciphertext values $\mathrm{C} 1, \mathrm{C} 2$, and C 3 are initialized with the corresponding 64 constant $\mathrm{C} 1, \mathrm{C} 2$, and C 3 values from Table A.5.
d. If encryption is supported by the IUT, the KEYs and the IVs are forwarded to the IUT, as specified in Input Type 14. If encryption is not supported by the IUT, the KEYs, the IVs, and the $64 \mathrm{C1}_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$ values are forwarded to the IUT using Input Type 15.
2. The IUT should:
a. If encryption is supported, initialize the C values $\mathrm{C} 1_{1}, \mathrm{C} 2_{1}$, and $\mathrm{C} 3_{1}$, with the corresponding $\mathrm{C}_{1}, \mathrm{C} 2_{1}$, and C_{1} values retained from the Variable Plaintext Known Answer Test for the TCBC-I Mode (Section 5.3.1.1). Otherwise, use the first values received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ through 64:

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.
At clock cycle T1:

1) Set the input block $\mathrm{I} 1_{i}$ equal to the value of $\mathrm{C} 1_{i}$.
2) Process $I 1_{i}$ through the DEA stage DEA_{3}, in the decrypt state using KEY3, resulting in intermediate value TEMP 1_{1}.

At clock cycle T2:

1) Set the input block $I 2_{i}$ equal to the value of $\mathrm{C} 2_{\mathrm{i}}$.
2) Process I_{2} through the DEA stage DEA_{3} in the decrypt state using KEY3, resulting in intermediate value TEMP 2_{1}.
3) Process TEMP 1_{1} through the second DEA stage, denoted DEA_{2}, in the encrypt state using KEY2, resulting in intermediate value TEMP1 ${ }_{2}$.

At clock cycle T3:

1) Set the input block $I 3_{i}$ equal to the value of $\mathrm{C} 3_{\mathrm{i}}$.
2) Process I_{3} through the DEA stage DEA_{3} in the decrypt state using KEY3, resulting in intermediate value TEMP_{1}.
3) Process TEMP2 1_{1} through the second DEA stage, denoted DEA_{2}, in the encrypt state using KEY2, resulting in intermediate value TEMP2 2_{2}.
4) Process TEMP1 1_{2} through the DEA stage DEA_{1} in the decrypt state using KEY1, resulting in the output block $\mathrm{O1}_{\mathrm{i}}$.
5) Calculate the plaintext $\mathrm{P1}_{\mathrm{i}}$ by exclusive-ORing O_{i} with IV1.

At clock cycle T4:

1) Process TEMP2 2 through the DEA stage DEA_{1} in the decrypt state using KEY1, resulting in the output block O_{2}.
2) Calculate the plaintext $\mathrm{P} 2_{\mathrm{i}}$ by exclusive-ORing $\mathrm{O} 2_{\mathrm{i}}$ with IV2.
3) Process TEMP3 1_{1} through the second DEA stage, denoted DEA_{2}, in the encrypt state using KEY2, resulting in intermediate value TEMP3 2_{2}.

At clock cycle T5:

1) Process TEMP3 3_{2} through the DEA stage DEA_{1} in the decrypt state using KEY1, resulting in the output block O_{3}.
2) Calculate the plaintext $\mathrm{P} 3_{i}$ by exclusive-ORing $\mathrm{O} 3_{i}$ with IV3.
c. Forward the current values of the loop number i, KEY (which represents KEY1, KEY2, and KEY3), IV1, IV2, IV3, $\mathrm{C} 1_{i}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$, and the resulting $\mathrm{P} 1_{1}, \mathrm{P} 2_{1}$ and $\mathrm{P} 3_{1}$ as specified in Output Type 3.
d. Retain $\mathrm{P}_{1}, \mathrm{P}_{\mathrm{i}}$, and $\mathrm{P} 3_{\mathrm{i}}$, for use with the Initial Permutation Known Answer Test for the TCBC-I Mode (Section 5.3.2.2).
e. If encryption is supported, set $\mathrm{C} 1_{i+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$ equal to the corresponding output from the Variable Plaintext Known Answer Test for the TCBC-I mode. If encryption is not supported, assign new values to $\mathrm{C1}_{\mathrm{i}+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$, by setting them equal to the corresponding C values supplied by the TMOVS.

NOTE -- The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values. The values of the P1, P2, and P3 variables should be the set of basis vectors.

5.3.2 2 The Initial Permutation Known Answer - TCBC-I Mode

Table 32 The Initial Permutation Known Answer Test - TCBC-I Mode


```
T4: TEMP3 i is encrypted by DEA }\mp@subsup{2}{2}{}\mathrm{ using KEY2, resulting in
TEMP3}\mp@subsup{}{2}{
TEMP2 is decrypted by DEA }\mp@subsup{A}{1}{}\mathrm{ using KEY1, resulting in O2 2
P2
    T5: TEMP3 3 is decrypted by DEA 
        P3}\mp@subsup{3}{\textrm{i}}{= O}\mp@subsup{3}{\textrm{i}}{
    Send i, KEY (representing KEY1, KEY2, and KEY3), IV1, IV2, IV3, C1 1,
    C2
    Ck}\mp@subsup{}{\textrm{i}+1}{}(\mathrm{ where k=1..3) = corresponding Pk
}
```

TMOVS: Compare C1, C2, and C3 results from each loop with known answers.
See Table A.7.

Table 32 illustrates the Initial Permutation Known Answer Test for the TCBC-I mode of operation.

1. The TMOVS:

a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $I V 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: IV $1+R_{1} \bmod 2^{64}$ where $R_{1}=5555555555555555$, i.e., IV $2_{\text {hex }}=555555555555$ 55 55. IV3 is computed by the equation IV1 $+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA, i.e., $I V 3_{\text {hex }}=$ AA AA AA AA AA AA AA AA.
c. Initializes the 64-bit ciphertext values $\mathrm{C}_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$ to the corresponding plaintext values $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}$, and $\mathrm{P} 3_{\mathrm{i}}$, respectively, obtained from the Variable Ciphertext Known Answer Test.
d. Forwards this information to the IUT using Input Type 15.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.
a. At clock cycle T1:

1) Set the input block $\mathrm{I} 1_{i}$ equal to the value of $\mathrm{C} 1_{i}$.
2) Process 11_{1} through the DEA stage DEA_{3} in the decrypt state using KEY3, resulting in intermediate value TEMP 1_{1}.

At clock cycle T2:

1) Set the input block $I 2_{i}$ equal to the value of $\mathrm{C} 2_{i}$.
2) Process I_{2} through the DEA stage DEA_{3} in the decrypt state using KEY3, resulting in intermediate value TEMP $2{ }_{1}$.
3) Process TEMP1 1_{1} through the second DEA stage, denoted DEA_{2}, in the encrypt state using KEY2, resulting in intermediate value TEMP1 1_{2}.

At clock cycle T3:

1) Set the input block $I 3_{i}$ equal to the value of $C 3_{i}$.
2) Process I_{i} through the DEA stage DEA_{3} in the decrypt state using KEY3, resulting in intermediate value TEMP 3_{1}.
3) Process TEMP 2_{1} through the second DEA stage, denoted DEA_{2}, in the encrypt state using KEY2, resulting in intermediate value TEMP2 2_{2}.
4) Process TEMP 1_{2} through the DEA stage DEA $_{1}$, in the decrypt state using KEY1, resulting in the output block $\mathrm{O1}_{\mathrm{i}}$.
5) Calculate the plaintext $\mathrm{P1}_{\mathrm{i}}$ by exclusive-ORing $\mathrm{O} 1_{\mathrm{i}}$ with IV1.

At clock cycle T4:

1) Process TEMP2 2 through the DEA stage DEA_{1} in the decrypt state using KEY1, resulting in the output block O_{2}.
2) Calculate the plaintext $\mathrm{P} 2_{\mathrm{i}}$ by exclusive-ORing $\mathrm{O} 2_{\mathrm{i}}$ with IV2.
3) Process TEMP 3_{1} through the second DEA stage, denoted DEA_{2}, in the encrypt state using KEY2, resulting in intermediate value TEMP3 ${ }_{2}$.

At clock cycle T5:

1) Process TEMP3 3_{2} through the DEA stage DEA_{1} in the decrypt state using KEY1, resulting in the output block O_{3}.
2) Calculate the plaintext $\mathrm{P} 3_{i}$ by exclusive-ORing O_{i} with IV3.
b. Forward the current values of the loop number i, KEY (which represents KEY1, KEY2, and KEY3), IV1, IV2, IV3, $\mathrm{C1}_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$, and the resulting $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}$ and $\mathrm{P} 3_{i}$ as specified in Output Type 3.
c. \quad Set $\mathrm{C1}_{\mathrm{i}+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$ equal to the corresponding output supplied by the TMOVS.

NOTE -- The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received $\mathrm{C} 1, \mathrm{C} 2$, and C3 results to the known values. See Table A.7.

5.3.2.3 The Variable Key Known Answer Test for the Decryption Process -TCBC-I Mode

Table 33 The Variable Key Known Answer Test for the Decryption Process - TCBC-I Mode
TMOVS: Initialize $\quad \mathrm{KEY}_{1}=\mathrm{KEY}_{1}=\mathrm{KEY}_{1}=8001010101010101$ (odd parity set)
IV1=00000000000000000
$\mathrm{IV} 2=5555555555555555$
IV3 $=$ AAAAAAAAAAAAAAAA
If encryption supported by IUT:
Send $\quad \mathrm{KEY}_{1}$ (representing $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}$, and KEY_{1}), IV1, IV2, IV3
If encryption is not supported by the IUT:
Initialize $\quad \mathrm{Ck}_{\mathrm{i}}($ where $\mathrm{k}=1 . .3$ and $\mathrm{i}=1 . .56)=\mathrm{Ck}$ values in Table A .11
Send $\quad \mathrm{KEY}_{1}$ (representing KEY_{1}, KEY_{2}, and KEY_{1}), IV1,IV2,IV3, $\mathrm{C} 1_{1}, \ldots, \mathrm{C} 1_{56}, \mathrm{C} 2_{1}, \ldots, \mathrm{C} 2_{56}, \mathrm{C} 3_{1}, \ldots, \mathrm{C} 3_{56}$

IUT: If encryption is supported by the IUT:
Initialize Ck_{1} (where $\mathrm{k}=1 . .3$) = corresponding values from output of Variable Key Known Answer Test for the Encryption Process.

Otherwise, use the corresponding value received from the TMOVS.
FOR $\mathrm{i}=1$ to 64
\{
If (i $\bmod 8 \neq 0)$ \{process every bit except parity bits \}
\{

Perform
Triple DES:

T1: $\quad \mathrm{I}_{\mathrm{i}}=\mathrm{C} 1_{\mathrm{i}}$
I_{1} is read into TDEA and is decrypted by DEA_{3} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP1 1_{1}

T2: $\quad \mathrm{I} 2_{\mathrm{i}}=\mathrm{C} 2_{\mathrm{i}}$
$\mathrm{I} 2_{\mathrm{i}}$ is read into TDEA and is decrypted by DEA_{3} using
$\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP_{1}
TEMP 1_{1} is encrypted by DEA_{2} using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in TEMP1 ${ }_{2}$

T3: $\quad \mathrm{I}_{\mathrm{i}}=\mathrm{C} 3_{\mathrm{i}}$
I_{i} is read into TDEA and is decrypted by DEA_{3} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP3 ${ }_{1}$

TEMP2 ${ }_{1}$ is encrypted by DEA_{2} using $\mathrm{KEY} 2_{i}$, resulting in TEMP $_{2}$

TEMP 1_{2} is decrypted by DEA_{1} using $K E Y 1_{i}$, resulting in O_{i}
$\mathrm{Pl}_{\mathrm{i}}=\mathrm{O}_{\mathrm{i}} \oplus \mathrm{IV} 1$
T4: $\quad \mathrm{TEMP}_{1}$ is encrypted by DEA_{2} using KEY_{2}, resulting in TEMP $_{2}$

TEMP 2_{2} is decrypted by DEA_{1} using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in $\mathrm{O} 2_{\mathrm{i}}$
$\mathrm{P} 2_{\mathrm{i}}=\mathrm{O} 2_{\mathrm{i}} \oplus \mathrm{IV} 2$
T5: $\quad \mathrm{TEMP}_{2}$ is decrypted by DEA_{1} using $K E Y 1_{i}$, resulting in O_{i}
$\mathrm{P} 3_{\mathrm{i}}=\mathrm{O} 3_{\mathrm{i}} \oplus \mathrm{IV} 3$
Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$), IV1, IV2, IV3, $\mathrm{C} 1_{i}, \mathrm{C} 2_{\mathrm{i}}, \mathrm{C} 3_{\mathrm{i}}, \mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}, \mathrm{P} 3_{\mathrm{i}}$
$K E Y 1_{i+1}=K E Y 2_{i+1}=K E Y 3_{i+1}=$ vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in the $i+1^{\text {th }}$ position. NOTE -- odd parity is set.

If encryption is supported:
Assign $\mathrm{C1}_{\mathrm{i}+1}, \mathrm{C} 2_{\mathrm{i}+1}$, and $\mathrm{C} 3_{i+1}$ to corresponding $\mathrm{C} 1_{i+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$ values from Variable Key Known Answer Test for the Encryption Process
else
$\mathrm{Ck}_{\mathrm{i}+1}($ where $\mathrm{k}=1 . .3)=$ corresponding $\mathrm{Ck}_{\mathrm{i}+1}$ value from

```
    TMOVS
    }
}
```

TMOVS: Compare results from the 56 decryptions with known answers. Should be P1=P2= P3 $=0$ for all 56 rounds.

Table 33 illustrates the Variable Key Known Answer Test for the Decryption Process - TCBC-I mode of operation.

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}$, and KEY_{1} to contain " 0 " in every significant bit except for a " 1 " in the first position, i.e., the 64 -bit $\mathrm{KEY} 1_{1 \text { bin }}=$ $K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001$ 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or " 1 " to get odd parity.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $I V 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: IV $1+R_{1} \bmod 2^{64}$ where $R_{1}=5555555555555555$, i.e., IV $2_{\text {hex }}=555555555555$ 5555 . IV 3 is computed by the equation IV $1+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA, i.e., $I V 3_{\text {hex }}=$ AA AA AA AA AA AA AA AA.
c. If the IUT does not support encryption, $\mathrm{C} 1_{i}, \mathrm{C} 2_{\mathrm{i}}$, and $\mathrm{C} 3_{\mathrm{i}}$ values are initialized with the constant $\mathrm{C} 1_{i}, \mathrm{C} 2_{i}$, and $\mathrm{C} 3_{\mathrm{i}}$ values from Table A .11 where $\mathrm{i}=1 . .56$.
d. If encryption is not supported by the IUT, KEY (representing KEY1, KEY2, and KEY3), IV1, IV2, and IV3, and the 56 C1, C2, and C3 values are forwarded to the IUT, as specified in Input Type 15. Otherwise, the KEY (representing KEY1, KEY2, and KEY3), IV1, IV2, and IV3 are forwarded to the IUT, as specified in Input Type 14.
2. The IUT should:
a. If encryption is supported, initialize the $\mathrm{C}_{1}, \mathrm{C} 2_{1}$, and $\mathrm{C} 3_{1}$ values with the first corresponding C1, C2, and C3 values retained from the Variable KEY Known Answer Test for the Encryption Process for the TCBC-I Mode (Section 5.3.1.3). Otherwise, use the first values received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ to 56 :

NOTE -- 56 is the number of significant bits in a TDES key.
NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.

1) At clock cycle T1:
a) Set the input block $\mathrm{I1}_{\mathrm{i}}$ equal to the value of $\mathrm{C} 1_{\mathrm{i}}$.
b) Process $\mathrm{I} 1_{\mathrm{i}}$ through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP 1_{1}.

At clock cycle T2:
a) Set the input block $\mathrm{I} 2_{\mathrm{i}}$ equal to the value of $\mathrm{C} 2_{i}$.
b) Process I_{2} through the DEA stage DEA_{3} in the decrypt state using $K E Y 3_{i}$, resulting in intermediate value TEMP 2_{1}.
c) Process TEMP1 1_{1} through the DEA stage DEA_{2} in the encrypt state using KEY 2_{i}, resulting in intermediate value $\mathrm{TEMP1}_{2}$.

At clock cycle T3:
a) Set the input block $\mathrm{I} 3_{i}$ equal to the value of $\mathrm{C} 3_{\mathrm{i}}$.
b) Process I_{3} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP3 ${ }_{1}$.
c) Process TEMP2 1_{1} through the DEA stage DEA_{2} in the encrypt state using KEY 2_{i}, resulting in intermediate value TEMP2 2_{2}.
d) Process TEMP 1_{2} through the DEA stage DEA_{1} in the decrypt state using $K E Y 1_{i}$, resulting in the output block $\mathrm{O1}_{\mathrm{i}}$.
e) Calculate the plaintext P_{i} by exclusive-ORing O_{i} with IV1.

At clock cycle T4:
a) Process TEMP 2_{2} through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{i}$, resulting in the output block $\mathrm{O} 2_{\mathrm{i}}$.
b) Calculate the plaintext $\mathrm{P} 2_{\mathrm{i}}$ by exclusive-ORing $\mathrm{O} 2_{\mathrm{i}}$ with IV2.
c) Process TEMP3 1_{1} through the DEA stage DEA $_{2}$ in the encrypt state using KEY 2_{i}, resulting in intermediate value TEMP3 $_{2}$.

At clock cycle T5:
a) Process TEMP3 2 through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block $\mathrm{O} 3_{\mathrm{i}}$.
b) Calculate the plaintext $\mathrm{P} 3_{i}$ by exclusive-ORing $\mathrm{O} 3_{\mathrm{i}}$ with IV3.
2) Forward the current values of the loop number i, $\mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY}_{1}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$), IV1, IV2, IV3, $\mathrm{C}_{1}, \mathrm{C} 2_{\mathrm{i}}, \mathrm{C} 3_{\mathrm{i}}$, and the resulting $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}$, and $\mathrm{P} 3_{\mathrm{i}}$ to the TMOVS as specified in Output Type 3.
3) Set $\mathrm{KEY} 1_{i+1}, \mathrm{KEY} 2_{i+1}$, and $\mathrm{KEY} 3_{\mathrm{i}+1}$, equal to the vector consisting of " 0 " in every significant bit position except for a single "1" bit in position $\mathrm{i}+1$. The parity bits may contain " 1 " or " 0 " to make odd parity.

NOTE - KEY $1_{i+1}=K E Y 2_{i+1}=\mathrm{KEY}_{\mathrm{i}+1}$.
4) If encryption is supported, set the C values $\mathrm{C1}_{i_{+1} 1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$, equal to the corresponding $\mathrm{C1}_{\mathrm{i}+1}, \mathrm{C} 2_{\mathrm{i}+1}$, and $\mathrm{C} 3_{\mathrm{i}+1}$ values retained from the Variable KEY Known Answer Test for the Encryption Process for TCBC-I mode. If encryption is not supported by the IUT, set $\mathrm{C} 1_{i+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$ equal to the corresponding $\mathrm{C1}_{\mathrm{i}+1}, \mathrm{C} 2_{\mathrm{i}+1}$, and $\mathrm{C} 3_{\mathrm{i}+1}$, values supplied by the TMOVS.

NOTE -- The output from the IUT for this test should consist of 56 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values. The P1, P2, and P3 results should be all zeros.

5.3.2 4 Permutation Operation Known Answer Test for the Decryption Process - TCBC-I Mode

Table 34 The Permutation Operation Known Answer Test for the Decryption Process -TCBC-I Mode

TMOVS: Initialize $\quad \mathrm{KEY}_{1}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}($ where $\mathrm{i}=1 . .32)=32 \mathrm{KEY}$ values from Table A. 12

IV1 = 0000000000000000
$\mathrm{IV} 2=5555555555555555$

IV3 $=$ AAAAAAAAAAAAAAAA
If encryption is supported by the IUT:
Send
IV1, IV2, and IV3
$\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{32}$ (where KEY represents the values of KEY1, KEY2, and KEY3)

If encryption is not supported by the IUT:
Initialize $\quad \mathrm{Ck}_{\mathrm{i}}($ where $\mathrm{k}=1 . .3$ and $\mathrm{i}=1 . .32)=$ corresponding Ck_{i} values from Table A. 12

Send IV1, IV2, and IV3,
$\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{32}$ (where KEY represents the values of KEY1, KEY2, and KEY3)
$\mathrm{C1}_{1}, \ldots, \mathrm{C1}_{32}, \mathrm{C} 2_{1}, \ldots, \mathrm{C} 2_{32}, \mathrm{C} 3_{1}, \ldots, \mathrm{C} 3_{32}$
IUT: If encryption is supported by the IUT:
Initialize $\quad \mathrm{C} 1_{1}, \mathrm{C} 2_{1}, \mathrm{C} 3_{1}$ values with corresponding values retained from Permutation Operation Known Answer Test for Encryption Process.

Otherwise, use the first values received from the TMOVS.
FOR i $=1$ to 32
\{

Perform
T1: $\quad \mathrm{I}_{\mathrm{i}}=\mathrm{C} 1_{\mathrm{i}}$
I_{i} is read into TDEA and is decrypted by DEA_{3} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP1 1_{1}

T2: $\quad \mathrm{I} 2_{\mathrm{i}}=\mathrm{C} 2_{\mathrm{i}}$
I_{i} is read into TDEA and is decrypted by DEA_{3} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP2 ${ }_{1}$

TEMP1 1_{1} is encrypted by DEA_{2} using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in TEMP $_{12}$

T3: $\quad \mathrm{I}_{\mathrm{i}}=\mathrm{C} 3_{\mathrm{i}}$
$\mathrm{I} 3_{i}$ is read into TDEA and is decrypted by DEA_{3} using $\mathrm{KEY}_{\mathrm{i}}$, resulting in TEMP3 1_{1}

TEMP 2_{1} is encrypted by DEA_{2} using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in TEMP $_{2}$

TEMP 1_{2} is decrypted by DEA_{1} using $\mathrm{KEY} 1_{i}$, resulting in $\mathrm{O1}_{\mathrm{i}}$
$\mathrm{P}_{\mathrm{i}}=\mathrm{O}_{\mathrm{i}} \oplus \mathrm{IV} 1$
T4: TEMP $_{1}$ is encrypted by DEA_{2} using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in TEMP $_{2}$

TEMP 2_{2} is decrypted by DEA_{1} using $\mathrm{KEY} 1_{i}$, resulting in $\mathrm{O} 2_{\mathrm{i}}$
$\mathrm{P} 2_{\mathrm{i}}=\mathrm{O} 2_{\mathrm{i}} \oplus \mathrm{IV} 2$
T5: \quad TEMP $_{2}$ is decrypted by DEA_{1} using $\mathrm{KEY} 1_{i}$, resulting in O_{i}
$\mathrm{P} 3_{\mathrm{i}}=\mathrm{O} 3_{\mathrm{i}} \oplus \mathrm{IV} 3$
Send $\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}$ (representing $\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$), IV1, IV2, IV3, $\mathrm{C} 1_{i}, \mathrm{C} 2_{\mathrm{i}}, \mathrm{C} 3_{\mathrm{i}}, \mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}, \mathrm{P} 3_{\mathrm{i}}$
$K E Y 1_{i+1}=\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}+1}=$ corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ supplied from TMOVS

If encryption is supported:
$\mathrm{Ck}_{\mathrm{i}+1}$ (where $\mathrm{k}=1 . .3$) = corresponding $\mathrm{Ck}_{\mathrm{i}+1}$ from Permutation Operation Known Answer Test for the Encryption Process
else

Table 34 illustrates the Permutation Operation Known Answer Test for the TCBC-I Decryption Process.

1. The TMOVS:
a. If the IUT supports encryption, the $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ variables are initialized with the 32 constant $\mathrm{KEY}_{\mathrm{i}}$ values from Table A.12. If the IUT does not support encryption, the KEY variables, $\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$, and the C variables, $\mathrm{C} 1, \mathrm{C} 2$, and C 3 are initialized with the 32 constant KEY and $\mathrm{C} 1, \mathrm{C} 2$, and C3 values from Table A. 12 .

NOTE -- KEY1=KEY2=KEY3.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $I V 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: $\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=5555555555555555$, i.e., $\mathrm{IV} 2_{\text {hex }}=555555555555$ 5555 . IV3 is computed by the equation IV1 $+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=\mathrm{AAAAAAAAAAAAAAAA}$, i.e., $I V 3_{\text {hex }}=\mathrm{AA}$ AA AA AA AA AA AA AA.
c. If encryption is supported by the IUT, the 32 KEY values for KEY1, KEY2, and KEY3, and the IV1, IV2, and IV3 values are forwarded to the IUT using Input Type 16. If encryption is not supported by the IUT, the $32 \mathrm{KEY}, \mathrm{C} 1, \mathrm{C} 2$, and C 3 groups and the IV1, IV2, and IV3 values are forwarded to the IUT using Input Type 17.
2. The IUT should:
a. If encryption is supported by the IUT, initialize the $\mathrm{C} 1_{1}, \mathrm{C} 2_{1}$, and $\mathrm{C} 3_{1}$ values with the first $\mathrm{C} 1_{1}, \mathrm{C} 2_{1}$, and $\mathrm{C} 3_{1}$ values retained from the Permutation Operation Known Answer Test for the Encryption Process for the TCBC-I Mode (Section 5.3.1.4). Otherwise, use the first values received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ to 32 :

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.

1) At clock cycle T1:
a) Set the input block $\mathrm{I1}_{\mathrm{i}}$ equal to the value of $\mathrm{C} 1_{i}$.
b) Process I_{i} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP1 1_{1}.

At clock cycle T2:
a) Set the input block $I 2_{i}$ equal to the value of $\mathrm{C} 2_{\mathrm{i}}$.
b) Process I_{2} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP 2_{1}.
c) Process TEMP1 1 through the DEA stage DEA_{2} in the encrypt state using KEY 2_{i}, resulting in intermediate value $\mathrm{TEMP1}_{2}$.

At clock cycle T3:
a) Set the input block $I 3_{i}$ equal to the value of $\mathrm{C} 3_{\mathrm{i}}$.
b) Process $\left[3_{i}\right.$ through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP_{1}.
c) Process TEMP2 1_{1} through the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP_{2}.
d) Process TEMP 1_{2} through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block $\mathrm{O1}_{\mathrm{i}}$.
e) Calculate the plaintext $\mathrm{P1}_{\mathrm{i}}$ by exclusive-ORing O_{i} with IV1.

At clock cycle T4:
a) Process TEMP2 2 through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block $\mathrm{O} 2_{\mathrm{i}}$.
b) Calculate the plaintext $\mathrm{P} 2_{i}$ by exclusive-ORing $\mathrm{O} 2_{\mathrm{i}}$ with IV2.
c) Process TEMP3 1_{1} through the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP_{2}.

At clock cycle T5:
a) Process TEMP3 2 through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block $\mathrm{O} 3_{\mathrm{i}}$.
b) Calculate the plaintext $\mathrm{P} 3_{i}$ by exclusive-ORing $\mathrm{O} 3_{i}$ with IV3.
2) Forward the current values of the loop number i, $\mathrm{KEY}_{\mathrm{I}}$ (representing $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$), IV1, IV2, IV3, $\mathrm{C} 1_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}, \mathrm{C} 3_{\mathrm{i}}$, and the resulting $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}$, and $\mathrm{P} 3_{\mathrm{i}}$ to the TMOVS as specified in Output Type 3.
3) Assign new values to $\mathrm{KEY} 1_{i+1}$, $\mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY} 3_{\mathrm{i}+1}$, by setting them equal to the corresponding KEY values supplied by the TMOVS.

NOTE -- KEY1=KEY2=KEY3.
4) If encryption is supported, set the C values $\mathrm{C1}_{i_{+1}}, \mathrm{C} 2_{i+1}$, and $\mathrm{C}_{3_{i+1}}$ equal to the corresponding $\mathrm{C1}_{\mathrm{i}+1}, \mathrm{C}_{2+1}$, and $\mathrm{C}_{3_{i+1}}$ values retained from the Permutation Operation Known Answer Test for the Encryption Process for TCBC-I mode. If encryption is not supported by the IUT, set $\mathrm{C1}_{i+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$ equal to the corresponding $\mathrm{C} 1_{i+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$, values supplied by the TMOVS.

NOTE -- The above processing should continue until all 32 KEY values are processed. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values. The resulting P1, P2, and P3 results should be all zeros.

5.3.2.5 Substitution Table Known Answer Test for the Decryption Process -TCBC-I Mode

Table 35 The Substitution Table Known Answer Test for the Decryption Process -TCBC-I Mode

TMOVS:	Initialize	$K E Y 1_{i}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}($ where $\mathrm{i}=1 . .19)=19 \mathrm{KEY}$ values from Table A. 8
		IV 1 $=0000000000000000$
		$\mathrm{IV} 2=5555555555555555$
		$\mathrm{IV} 3=\mathrm{AAAAAAAAAAAAAAAA}$
	If encryption is supported by the IUT:	
	Send	IV1, IV2, and IV3,
		$\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{19}$ (where KEY represents the values of KEY1, KEY2, and KEY3)

If encryption is not supported by the IUT:
Initialize $\quad \mathrm{Ck}_{\mathrm{i}}($ where $\mathrm{k}=1 . .3$ and where $\mathrm{i}=1 . .19)=$ corresponding Ck_{i} values from Table A. 8

Send IV1, IV2, and IV3,
$\mathrm{KEY}_{1}, \mathrm{KEY}_{2}, \ldots, \mathrm{KEY}_{19}$ (where KEY represents the values of KEY1, KEY2, and KEY3)
$\mathrm{C} 1_{1}, \ldots, \mathrm{C1}_{19}, \mathrm{C} 2_{1}, \ldots, \mathrm{C} 2_{19}, \mathrm{C} 3_{1}, \ldots, \mathrm{C} 3_{19}$
IUT: If encryption is supported by the IUT:
Initialize $\quad \mathrm{C} 1_{1}, \mathrm{C} 2_{1}, \mathrm{C} 3_{1}$ values retained from Substitution Table Known Answer Test for Encryption Process.

Otherwise, use the first values received from the TMOVS.
FOR $\mathrm{i}=1$ to 19
\{
T1: $\quad \mathrm{I}_{\mathrm{i}}=\mathrm{C} 1_{\mathrm{i}}$
Perform
Triple DES:


```
    Ck
    TMOVS
    }
TMOVS: Compare results with known answers.
```

Table 35 illustrates the Substitution Table Known Answer Test for the TCBC-I Decryption Process.

1. The TMOVS:
a. If the IUT supports encryption, the $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$ variables are initialized with the 19 constant KEY values from Table A.8. If the IUT does not support encryption, the KEY variables, KEY1, KEY2, and KEY3, and the C variables, $\mathrm{C} 1, \mathrm{C} 2$, and C 3 are initialized with the 19 constant KEY and $\mathrm{C} 1, \mathrm{C} 2$, and C3 values from Table A.8.

NOTE -- KEY1=KEY2=KEY3.
b. Initializes the 64-bit IV parameters, IV1, IV2, and IV3. IV1 is initialized to the constant hexadecimal value 0 , i.e., $\mathrm{IV} 1_{\text {hex }}=0000000000000000$. Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: $\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=5555555555555555$, i.e., $\mathrm{IV} 2_{\text {hex }}=555555555555$
5555 . IV 3 is computed by the equation IV $1+R_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=A A A A A A A A A A A A A A A A$, i.e., $I V 3_{\text {hex }}=A A$ AA AA AA AA AA AA AA.
c. If encryption is supported by the IUT, the 19 KEY values for KEY1, KEY2, and KEY3, and the IV1, IV2, and IV3 values are forwarded to the IUT using Input Type 16. If encryption is not supported by the IUT, the $19 \mathrm{KEY}, \mathrm{C} 1, \mathrm{C} 2$, and C3 groups and the IV1, IV2, and IV3 values are forwarded to the IUT using Input Type 17.
2. The IUT should:
a. If encryption is supported by the IUT, initialize the $\mathrm{C} 1, \mathrm{C} 2$, and C 3 values with the first C1, C2, and C3 values retained from the Substitution Table Known Answer Test for the Encryption Process for the TCBC-I Mode (Section 5.3.1.5). Otherwise, use the first value received from the TMOVS.
b. Perform the following for $\mathrm{i}=1$ to 19 :

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.

1) At clock cycle T1:
a) Set $\mathrm{I} 1_{i}$ equal to the value of $\mathrm{C} 1_{i}$.
b) Process I_{i} through the DEA stage DEA_{3} in the decrypt state using $K E Y 3_{i}$, resulting in intermediate value TEMP 1_{1}.

At clock cycle T2:
a) Set $\mathrm{I} 2_{\mathrm{i}}$ equal to the value of $\mathrm{C} 2_{\mathrm{i}}$.
b) Process I_{i} through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP 2_{1}.
c) Process TEMP1 1 through the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value $\mathrm{TEMP1}_{2}$.

At clock cycle T3:
a) \quad Set $I 3_{i}$ equal to the value of $\mathrm{C} 3_{i}$.
b) Process $I 3_{i}$ through the DEA stage DEA_{3} in the decrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in intermediate value TEMP 3_{1}.
c) Process TEMP2 1_{1} through the DEA stage DEA_{2} in the encrypt state using KEY2 ${ }_{i}$, resulting in intermediate value TEMP $_{2}$.
d) Process TEMP1 2 through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block $\mathrm{O} 1_{\mathrm{i}}$.
e) Calculate the plaintext $\mathrm{P1}_{\mathrm{i}}$ by exclusive-ORing $\mathrm{O1}_{\mathrm{i}}$ with IV1.

At clock cycle T4:
a) Process TEMP2 2 through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block $\mathrm{O} 2_{\mathrm{i}}$.
b) Calculate the plaintext $\mathrm{P} 2_{i}$ by exclusive-ORing $\mathrm{O} 2_{\mathrm{i}}$ with IV2.
c) Process TEMP3 1_{1} through the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP_{2}.

At clock cycle T5:
a) Process TEMP3 2_{2} through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{i}$, resulting in the output block O_{i}.
b) Calculate the plaintext $\mathrm{P} 3_{\mathrm{i}}$ by exclusive-ORing O_{i} with IV3.
2) Forward the current values of the loop number i, $\mathrm{KEY}_{\mathrm{i}}$ (representing $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$), IV1, IV2, IV3, $\mathrm{C} 1_{\mathrm{i}}, \mathrm{C} 2_{\mathrm{i}}, \mathrm{C} 3_{\mathrm{i}}$, and the resulting $\mathrm{P} 1_{\mathrm{i}}, \mathrm{P} 2_{\mathrm{i}}$, and $\mathrm{P} 3_{\mathrm{i}}$ to the TMOVS as specified in Output Type 3.
3) Assign new values to $\mathrm{KEY}_{1+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$, by setting them equal to the corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ values supplied by the TMOVS.

NOTE -- KEY $1_{i+1}=K E Y 2_{i+1}=\mathrm{KEY}_{\mathrm{i}+1}$.
4) If encryption is supported, set the C values $\mathrm{C1}_{{ }_{i+1}}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$ equal to the corresponding $\mathrm{C1}_{\mathrm{i}+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$ values retained from the Substitution Table Known Answer Test for the Encryption Process for TCBC-I mode. If encryption is not supported by the IUT, set $\mathrm{C1}_{\mathrm{i}+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$ equal to the corresponding $\mathrm{C} 1_{i+1}, \mathrm{C} 2_{i+1}$, and $\mathrm{C} 3_{i+1}$, values supplied by the TMOVS.

NOTE -- The above processing should continue until all $19 \mathrm{KEY}, \mathrm{C} 1, \mathrm{C} 2$, and C 3 groups, as specified in Input Type 17, or all 19 KEY values, as specified in Input Type 16, are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

5.3.2.6 Monte Carlo Test for the Decryption Process - TCBC-I Mode

Table 36 The Monte Carlo Test for the Decryption Process - TCBC-I Mode


```
                    \(\mathrm{P}_{\mathrm{j}}=\mathrm{O}_{\mathrm{j}} \oplus \mathrm{CV} 1\)
    T4: \(\quad\) TEMP \(3_{1}\) is encrypted by \(\mathrm{DEA}_{2}\) using \(\mathrm{KEY} 2_{\mathrm{i}}\), resulting
        in TEMP3 \({ }_{2}\)
        TEMP \(2_{2}\) is decrypted by \(\mathrm{DEA}_{1}\) using \(K E Y 1_{i}\), resulting
        in \(\mathrm{O}_{2}{ }_{\mathrm{j}}\)
        \(\mathrm{P}_{\mathrm{j}}=\mathrm{O} 2_{\mathrm{j}} \oplus \mathrm{CV} 2\)
    T5: \(\quad \mathrm{TEMP}_{2}\) is decrypted by \(\mathrm{DEA}_{1}\) using \(\mathrm{KEY} 1_{\mathrm{i}}\), resulting
        in \(\mathrm{O}_{\mathrm{j}}\)
        \(\mathrm{P} 3_{\mathrm{j}}=\mathrm{O}_{\mathrm{j}} \oplus \mathrm{CV} 3\)
    FOR \(\mathrm{k}=1\) to 3
        \{
            \(\mathrm{CVk}_{\mathrm{j}+1}=\mathrm{Ck}_{\mathrm{j}}\)
            \(\mathrm{Ck}_{\mathrm{j}+1}=\mathrm{Pk}_{\mathrm{j}}\)
        \}
    \}
    \(\operatorname{Record} \mathrm{P} 1_{\mathrm{j}}, \mathrm{P} 2_{\mathrm{j}}, \mathrm{P} 3_{\mathrm{j}}\)
    Send i, KEY \(1_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}, \mathrm{CV} 3_{0}, \mathrm{Cl}_{0}, \mathrm{C} 2_{0}, \mathrm{C} 3_{0}, \mathrm{P} 1_{\mathrm{j}}, \mathrm{P} 2_{\mathrm{j}}\),
    \(P 3_{j}\)
    \(\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{P} 1_{\mathrm{j}}\)
    \(\operatorname{IF}\left(\mathrm{KEY} 1_{\mathrm{i}}\right.\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\left.\mathrm{KEY} 3_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}\right)\) or \(\left(\mathrm{KEY} 1_{\mathrm{i}}\right.\),
    \(K E Y 2_{i}\), and \(\mathrm{KEY}_{3}\) are independent)
    \(\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{P} 2_{\mathrm{j}-1}\)
ELSE
    \(\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{P1}_{\mathrm{j}}\)
    IF \(\left(K E Y 1_{i}=K E Y 2_{i}=K E Y 3_{i}\right)\) or \(\left(K E Y 1_{i}\right.\) and \(K E Y 2_{i}\) are independent and
\(\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}\) )
    \(\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{P1}_{\mathrm{j}}\)
```

```
ELSE
            KEY3 }\mp@subsup{\textrm{i}+1}{}{= KEY3}\mp@subsup{\textrm{K}}{\textrm{i}}{}\oplus\mp@subsup{\textrm{P3}}{\textrm{j}-2}{
            FOR k= 1 to 3
        {
            CVk
            Ck
            }
}
```

TMOVS Check IUT's output for correctness.

As summarized in Table 36, the Monte Carlo Test for the TCBC-I Decryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3, the initialization vectors IV1, IV2, and IV3, and the ciphertext variables C1, C2, and C3. The C variables, the IV variables, and the KEY variables consist of 64 bits each. IV2 is assigned the value of $\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=5555555555555555$. IV 3 is assigned the value of $\mathrm{IV} 1+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA.
b. Forwards this information to the IUT using Input Type 22.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. If $\mathrm{i}=0$ (if this is the first time through this loop), set the chaining value $\mathrm{CV} 1_{0}$ equal to the IV1, $\mathrm{CV} 2_{0}$ equal to the IV2, and $\mathrm{CV} 3_{0}$ equal to the IV3.
b. Record the current values of the output loop number i, KEY1 $1_{i}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, $\mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}, \mathrm{CV} 3_{0}$, and $\mathrm{C} 1_{0}, \mathrm{C} 2_{0}, \mathrm{C} 3_{0}$.
c. Perform the following for $\mathrm{j}=0$ through 9999:

NOTE -- the processing for each clock cycle $\mathrm{T} i$ is displayed.

1) At clock cycle $T 1$:
a) Set the input block $\mathrm{I1}_{\mathrm{j}}$ equal to the value of $\mathrm{C} 1_{\mathrm{j}}$.
b) Process I_{j} through the DEA stage DEA_{3} in the decrypt state using $K E Y 3_{i}$, resulting in intermediate value TEMP 1_{1}.

At clock cycle T2:
a) \quad Set the input block $I 2_{j}$ equal to the value of $\mathrm{C} 2_{j}$.
b) Process I_{j} through the DEA stage DEA_{3} in the decrypt state using KEY_{i}, resulting in intermediate value TEMP 2_{1}.
c) Process TEMP1 1 through the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value $\mathrm{TEMP1}_{2}$.

At clock cycle T3:
a) \quad Set the input block $I 3_{j}$ equal to the value of $\mathrm{C} 3_{j}$.
b) Process I_{j} through the DEA stage DEA_{3} in the decrypt state using KEY_{3}, resulting in intermediate value TEMP3 3_{1}.
c) Process TEMP2 1_{1} through the DEA stage DEA_{2} in the encrypt state using KEY2 ${ }_{i}$, resulting in intermediate value TEMP $_{2}$.
d) Process TEMP1 1_{2} through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block $\mathrm{O1}_{\mathrm{j}}$.
e) Calculate the plaintext P_{j} by exclusive-ORing O_{j} with IV1.

At clock cycle T4:
a) Process TEMP2 2 through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block $\mathrm{O} 2_{\mathrm{j}}$.
b) Calculate the plaintext $\mathrm{P} 2_{\mathrm{j}}$ by exclusive-ORing $\mathrm{O} 2_{\mathrm{j}}$ with IV2.
c) Process TEMP3 1_{1} through the DEA stage DEA_{2} in the encrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP_{2}.

At clock cycle T5:
a) Process TEMP3 2 through the DEA stage DEA_{1} in the decrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in the output block O_{j}.
b) Calculate the plaintext $\mathrm{P} 3_{\mathrm{j}}$ by exclusive-ORing O_{j} with IV3.
2) Prepare for loop $\mathrm{j}+1$ by doing the following:
a) \quad Assign $\mathrm{CV} 1_{\mathrm{j}+1}, \mathrm{CV} 2_{\mathrm{j}+1}, \mathrm{CV}_{\mathrm{j}+1}$ the current value of $\mathrm{C1}_{\mathrm{j}}, \mathrm{C} 2_{\mathrm{j}}, \mathrm{C} 3_{\mathrm{j}}$, respectively.
b) Assign $\mathrm{C1}_{\mathrm{j}+1}, \mathrm{C} 2_{\mathrm{j}+1}, \mathrm{C} 3_{\mathrm{j}+1}$ the current value of $\mathrm{P} 1_{\mathrm{j}}, \mathrm{P} 2_{\mathrm{j}}, \mathrm{P} 3_{\mathrm{j}}$, respectively.
d. Record $\mathrm{P}_{\mathrm{j}}, \mathrm{P} 2_{\mathrm{j}}, \mathrm{P} 3_{\mathrm{j}}$.
e. Forward all recorded information for this loop, as specified in Output Type 4, to the TMOVS.
f. Assign new values to the KEY parameters, KEY1, KEY2, and KEY3 in preparation for the next outer loop. Note $\mathrm{j}=9999$.

The new $\mathrm{KEY} 1_{i+1}$ should be calculated by exclusive-ORing the current $K E Y 1_{i}$ with the $P 1_{j}$.

The new $\mathrm{KEY}_{\mathrm{i}+1}$ calculation is based on the values of the keys. If $\mathrm{KEY} 1_{\mathrm{i}}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY} 3_{i}=\mathrm{KEY} 1_{\mathrm{i}}$, or $\mathrm{KEY} 1_{\mathrm{i}}$, $\mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ are independent, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 2_{i}$ with the $\mathrm{P} 2_{\mathrm{j}-1}$. If $K E Y 1_{i}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current KEY2 ${ }_{i}$ with the P_{j}.

The new $\mathrm{KEY}_{\text {i+1 }}$ calculation is also based on the values of the keys. If $K E Y 1_{i}, K E Y 2_{\mathrm{i}}$, and $\mathrm{KEY} 3_{\mathrm{i}}$ are independent, the new $\mathrm{KEY} 3_{i+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the $\mathrm{P} 3_{\mathrm{j}-2}$. If $\mathrm{KEY} 1_{\mathrm{i}}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY} 3_{i}=\mathrm{KEY} 1_{\mathrm{i}}$, or if $K E Y 1_{i}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY}_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 3_{i}$ with the $P 1_{j}$.
g. Assign new values to $\mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}$, and CV_{3}, in preparation for the next outer loop. $\mathrm{CV} 1_{0}, \mathrm{CV} 2_{0}$, and $\mathrm{CV} 3_{0}$ should be assigned the value of the current $\mathrm{C} 1_{\mathrm{j}}, \mathrm{C} 2_{\mathrm{j}}$, and C_{j}, respectively.

NOTE -- the new CV should be denoted as CV_{0} because this value is used for the first pass through the inner loop when $\mathrm{j}=0$.
h. Assign a new value to $\mathrm{C}_{0}, \mathrm{C} 2_{0}$, and $\mathrm{C} 3_{0}$ in preparation for the next output loop. $\mathrm{C} 1_{0}$ should be assigned the value of the $\mathrm{P} 1_{\mathrm{j}}$. Likewise, $\mathrm{C} 2_{0}$ should be assigned the value of the $\mathrm{P} 2_{\mathrm{j}}$, and $\mathrm{C} 3_{0}$ should be assigned the value of the $\mathrm{P} 3_{\mathrm{j}}$.

NOTE -- the new C variables, $\mathrm{C} 1, \mathrm{C} 2$, and C 3 should be denoted as $\mathrm{C} 1_{0}, \mathrm{C} 2{ }_{0}$, and $\mathrm{C} 3_{0}$, respectively, to be used for the first pass through the inner loop when $\mathrm{j}=0$.

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 4.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values.

5.4 The Cipher Feedback (TCFB) Mode

The IUTs in the TDES Cipher Block Feedback (TCFB) mode of operation are validated by successfully completing (1) a set of Known Answer tests applicable to both IUTs supporting encryption and/or decryption and (2) a Monte Carlo test for each cryptographic process supported by the IUT.

The process of validating an IUT which supports the K-bit TCFB mode in either the encryption and/or decryption process involves the successful completion of the following six tests:

1. The Variable Text Known Answer Test - K-bit TCFB mode
2. The Inverse Permutation Known Answer Test - K-bit TCFB mode
3. The Variable Key Known Answer Test - K-bit TCFB mode
4. The Permutation Operation Known Answer Test - K-bit TCFB mode
5. The Substitution Table Known Answer Test - K-bit TCFB mode
6. The Monte Carlo Test for the Encryption Process - K-bit TCFB mode (if encryption is supported)

OR

The Monte Carlo Test for the Decryption Process - K-bit TCFB mode (if decryption is supported)

NOTE -- For IUTs, K can range from 1 to 64 bits.
An explanation of the tests follows.

5.4.1 The Known Answer Tests - TCFB Mode

The K-bit TCFB mode has one set of Known Answer tests which is used regardless of supported process, i.e., the same set of Known Answer tests is for IUTs supporting the encryption and/or decryption processes.

Throughout this section, TEXT and RESULT will refer to different variables depending on whether the encryption or decryption process is being tested. If the IUT performs TCFB encryption, TEXT refers to plaintext, and RESULT refers to ciphertext. If the IUT performs TCFB decryption, TEXT refers to ciphertext, and RESULT refers to plaintext.

The notation $\mathrm{LM}^{\mathrm{K}}(\mathrm{A})$ refers to the leftmost K-bits of A .

5.4.1.1 The Variable TEXT Known Answer Test - TCFB Mode

Table 37 The Variable TEXT Known Answer Test - TCFB Mode

TMOVS:	Initialize	KEYS: KEY1 $=$ KEY2 $=$ KEY3 $=0101010101010101$ (odd parity set)
		$\mathrm{IV}_{1}=8000000000000000$
		K-bit TEXT $=0$
	Send	KEY (representing KEY1, KEY2, and KEY3), IV ${ }_{1}$, K-bit TEXT
IUT:	FOR i $=1$ to 64	
	Perform	$\mathrm{I}_{\mathrm{i}}=\mathrm{IV}_{\mathrm{i}}$
	Triple DES:	I_{i} is read into TDEA and is encrypted by DEA D_{1} using KEY1, resulting in TEMP1
		TEMP1 is decrypted by DEA_{2} using KEY2, resulting in TEMP2
		TEMP2 is encrypted by DEA_{3} using KEY3, resulting in O_{i}
		K-bit $\operatorname{RESULT}_{\mathrm{i}}=\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O}_{\mathrm{i}}\right) \oplus$ K-bit TEXT
		Send i, KEY (representing KEY1, KEY2, and KEY3), IV $_{\mathrm{i}}$, K-bit TEXT, K-bit RESULT ${ }_{i}$
		$\mathrm{IV}_{\mathrm{i}+1}=$ basis vector where single "1" bit is in position $\mathrm{i}+1$
	\}	
TMOVS:	Compare RESULT from each loop with known answers.	
	Use K bits of output in Table A.1.	

As summarized in Table 37, the Variable TEXT Known Answer Test for the TCFB mode of operation is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit initialization vector IV_{1} to the basis vector containing a"1" in the first bit position and " 0 " in the following 63 positions, i.e., $\mathrm{IV}_{1 \text { bin }}=10000000$ 00 00000000. The equivalent of this value in hexadecimal notation is 8000000000000000 .
c. Initializes the K-bit TEXT parameter to the constant hexadecimal value 0, i.e., $\mathrm{TEXT}_{\text {hex }}=0000000000000000$.
d. Forwards this information to the IUT using Input Type 2.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :
a. Assign the value of the initialization vector IV_{i} to the input block I_{i}.
b. Process I_{i} through the three DEA stages, resulting in a 64 -bit output block O_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in output block O_{i}.
c. Calculate the K-bit RESULT i_{i} by exclusive-ORing the leftmost K -bits of O_{i} with the K-bit TEXT, i.e., $\left(\operatorname{RESULT}^{1}{ }_{\mathrm{i}}, \operatorname{RESULT}^{2}{ }_{\mathrm{i}}, \ldots, \operatorname{RESULT}^{\mathrm{K}}{ }_{\mathrm{i}}\right)=\left(\mathrm{O}^{1}{ }_{\mathrm{i}} \oplus \operatorname{TEXT}^{1}, \mathrm{O}^{2}{ }_{\mathrm{i}}\right.$ $\left.\oplus \mathrm{TEXT}^{2}, \ldots, \mathrm{O}_{\mathrm{i}}^{\mathrm{K}} \oplus \mathrm{TEXT}^{\mathrm{K}}\right)$.
d. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV_{i}, K-bit TEXT, and the resulting K-bit RESULT $_{\mathrm{i}}$ to the TMOVS as specified in Output Type 2.
e. Retain the K-bit RESULT values for use with the Inverse Permutation Known Answer Test for the TCFB Mode (Section 5.4.1.2).
f. Assign a new value to $\mathrm{IV}_{\mathrm{i}+1}$ by setting it equal to the value of a basis vector with a " 1 " bit in position $\mathrm{i}+1$, where $\mathrm{i}+1=2, \ldots, 64$.

NOTE -- This continues until every possible basis vector has been represented by the IV, i.e., 64 times. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.1. For IUTs where K is less than 64 , the leftmost K bits of output for each RESULT value in Table A. 1 are used.

5.4.1.2 The Inverse Permutation Known Answer Test - TCFB Mode

Table 38 The Inverse Permutation Known Answer Test - TCFB Mode

As summarized in Table 38, the Inverse Permutation Known Answer Test for the TCFB mode of operation is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 64-bit initialization vector IV_{1} to the basis vector containing a"1" in the first bit position and " 0 " in the following 63 positions, i.e., $\mathrm{IV}_{1 \text { bin }}=10000000$ 00 . The equivalent of this value in hexadecimal notation is 8000000000000000 .
c. Initializes the K-bit $\mathrm{TEXT}_{\mathrm{i}}$ (where $\mathrm{i}=1 . .64$) to the $\mathrm{RESULT}_{\mathrm{i}}$ values obtained from the Variable TEXT Known Answer Test.
d. Forwards this information to the IUT using Input Type 5.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :
a. Assign the value of the initialization vector IV_{i} to the input block I_{i}.
b. Process I_{i} through the three DEA stages, resulting in a 64-bit output block O_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using KEY3, resulting in output block O_{i}.
c. Calculate the K-bit $\operatorname{RESULT}_{\mathrm{i}}$ by exclusive-ORing the leftmost K-bits of O_{i} with the K-bit TEXT ${ }_{i}$, i.e., $\left(\operatorname{RESULT}^{1}{ }_{\mathrm{i}}, \operatorname{RESULT}^{2}{ }_{\mathrm{i}}, \ldots, \operatorname{RESULT}^{\mathrm{K}}{ }_{\mathrm{i}}\right)=\left(\mathrm{O}_{\mathrm{i}}{ }_{\mathrm{i}} \oplus \operatorname{TEXT}^{1}{ }_{\mathrm{i}}\right.$, $\left.\mathrm{O}_{\mathrm{i}}^{2} \oplus \mathrm{TEXT}^{2}{ }_{\mathrm{i}}, \ldots, \mathrm{O}_{\mathrm{i}}{ }_{\mathrm{i}} \oplus \mathrm{TEXT}^{\mathrm{K}}{ }_{\mathrm{i}}\right)$.
d. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, K-bit TEXT T_{i}, and the resulting K-bit RESULT $_{\mathrm{i}}$ to the TMOVS as specified in Output Type 2.
e. Assign a new value to $\mathrm{IV}_{\mathrm{i}+1}$ by setting it equal to the value of a basis vector with a " 1 " bit in position $\mathrm{i}+1$, where $\mathrm{i}+1=2, \ldots, 64$.
f. Assign a new value to TEXT_{i+1} by setting it equal to the corresponding output from the TMOVS.

NOTE -- This processing continues until all RESULT values from the Variable TEXT Known Answer Test have been used as input. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values. The RESULT values should be all zeros.

5.4.1.3 The Variable KEY Known Answer Test - TCFB Mode

Table 39 The Variable Key Known Answer Test - TCFB Mode


```
Use K bits of the results in Table A.2.
```

As summarized in Table 39, the Variable Key Known Answer Test for the TCFB mode of operation is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY}_{1}, \mathrm{KEY}_{1}$, and KEY_{1} to contain " 0 " in every significant bit except for a " 1 " in the first position, i.e., the 64-bit KEY1 $1_{1 \text { bin }}=$ $K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001$ 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or " 1 " to get odd parity.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. Initializes the K-bit TEXT to the constant hexadecimal value 0 . It is represented as K binary bits, where $\mathrm{K}=1, \ldots, 64$, i.e., $\mathrm{TEXT}_{\mathrm{bin}}=0^{1} 0^{2}, \ldots, 0^{\mathrm{K}}$. This is then translated into hexadecimal.
d. Forwards this information to the IUT using Input Type 2.
2. The IUT should perform the following for $\mathrm{i}=1$ to 56 :

NOTE -- 56 is the number of significant bits in a TDES key.
a. Assign the value of the initialization vector IV to the input block I_{i}.
b. Process I_{i} through the three DEA stages, resulting in a 64-bit output block O_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in output block O_{i}.
c. Calculate the K-bit $\operatorname{RESULT}_{\mathrm{i}}$ by exclusive-ORing the leftmost K-bits of O_{i} with the K-bit TEXT, i.e., $\left(\operatorname{RESULT}^{1}{ }_{\mathrm{i}}, \operatorname{RESULT}^{2}, \ldots, \operatorname{RESULT}^{\mathrm{K}}{ }_{\mathrm{i}}\right)=\left(\mathrm{O}^{1}{ }_{\mathrm{i}} \oplus \mathrm{TEXT}^{1}, \mathrm{O}^{2}{ }_{\mathrm{i}}\right.$ $\left.\oplus \mathrm{TEXT}^{2}, \ldots, \mathrm{O}_{\mathrm{i}}^{\mathrm{K}} \oplus \mathrm{TEXT}^{\mathrm{K}}\right)$.
d. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, K-bit TEXT, and the resulting K-bit RESULT ${ }_{i}$ to the TMOVS as specified in Output Type 2.
e. Set $\mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}$, and $\mathrm{KEY}_{\mathrm{i}+1}$ equal to the vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position $\mathrm{i}+1$. The parity bits contain " 1 " or " 0 " to make odd parity.

NOTE -- This processing should continue until every significant basis vector has been represented by the KEY parameters. The output from the IUT should consist of 56 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.2. For IUTs where K is less than 64 , the leftmost K bits of output for each RESULT in Table A. 2 are used.

5.4.1.4 The Permutation Operation Known Answer Test - TCFB Mode

Table 40 The Permutation Operation Known Answer Test - TCFB Mode

As summarized in Table 40, the Permutation Operation Known Answer Test for the TCFB mode of operation is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 with the 32 constant KEY values from Table A.3.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., $\mathrm{IV}_{\text {hex }}=$ 0000000000000000 .
c. Initializes the K-bit TEXT parameter to the constant hexadecimal value 0 , i.e., $\mathrm{TEXT}_{\text {hex }}=0000000000000000$.
d. Forwards this information to the IUT using Input Type 8.
2. The IUT should perform the following for $\mathrm{i}=1$ through 32 :
a. Assign the value of the initialization vector IV to the input block I_{i}.
b. Process I_{i} through the three DEA stages resulting in a 64 -bit output block O_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using $\mathrm{KEY} 1_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY2 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in output block O_{i}.
c. Calculate the K-bit $\operatorname{RESULT}_{\mathrm{i}}$ by exclusive-ORing the leftmost K-bits of O_{i} with the K-bit TEXT, i.e., $\left(\operatorname{RESULT}^{1}{ }_{\mathrm{i}}, \operatorname{RESULT}^{2}, \ldots, \operatorname{RESULT}^{\mathrm{K}}{ }_{\mathrm{i}}\right)=\left(\mathrm{O}^{1}{ }_{\mathrm{i}} \oplus \mathrm{TEXT}^{1}, \mathrm{O}^{2}{ }_{\mathrm{i}}\right.$ $\left.\oplus \mathrm{TEXT}^{2}, \ldots, \mathrm{O}^{\mathrm{K}} \oplus \mathrm{TEXT}^{\mathrm{K}}\right)$.
d. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, K-bit TEXT i_{i}, and the resulting K-bit RESULT T_{i} to the TMOVS as specified in Output Type 2.
e. Set $\mathrm{KEY}_{1+1}, \mathrm{KEY}_{2_{\mathrm{i}+1}}$, and $\mathrm{KEY}_{\mathrm{i}+1}$ equal to the corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ supplied by the TMOVS.

NOTE -- The above processing should continue until all 32 KEY values are processed. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.3. For IUTs where K is less than 64 , the leftmost K bits of output for each RESULT value in Table A. 3 are used.

5.4.1.5 The Substitution Table Known Answer Test - TCFB Mode

Table 41 The Substitution Table Known Answer Test - TCFB Mode

As summarized in Table 41, the Substitution Table Known Answer Test for the TCFB mode of operation is performed as follows:

1. The TMOVS:
a. Initializes the KEY-IV pairs with the 19 constant KEY-DATA values from Table A.4. The DATA values are assigned to the values of the initialization vectors IV. The KEY value indicates the values of KEY1, KEY2, and KEY3, i.e., KEY1=KEY2=KEY3.
b. Initializes the K-bit TEXT parameter to the constant hexadecimal value 0 , where $\mathrm{K}=1, \ldots, 64$, i.e., $\mathrm{TEXT}_{\mathrm{bin}}=0^{1}, 0^{2}, \ldots, 0^{\mathrm{K}}$.
c. Forwards this information to the IUT using Input Type 11.
2. The IUT should perform the following for $\mathrm{i}=1$ through 19:
a. Assign the value of the initialization vector IV_{i} to the input block I_{i}.
b. Process I_{i} through the three DEA stages resulting in a 64 -bit output block O_{i}. This involves processing I_{i} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 1_{i}, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using $\mathrm{KEY} 2_{\mathrm{i}}$, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in output block O_{i}.
c. Calculate the K-bit RESULT R_{i} by exclusive-ORing the leftmost K-bits of O_{i}, $\operatorname{LM}^{\mathrm{K}}\left(\mathrm{O}_{\mathrm{i}}\right)$, with the K-bit TEXT, i.e., $\left(\operatorname{RESULT}^{1}{ }_{\mathrm{i}}, \operatorname{RESULT}^{2}{ }_{\mathrm{i}}, \ldots, \operatorname{RESULT}^{\mathrm{K}}\right)=\left(\mathrm{O}_{\mathrm{i}}^{1}\right.$ $\left.\oplus \mathrm{TEXT}^{1}, \mathrm{O}_{\mathrm{i}}^{2} \oplus \mathrm{TEXT}^{2}, \ldots, \mathrm{O}_{\mathrm{i}}^{\mathrm{K}} \oplus \mathrm{TEXT}^{\mathrm{K}}\right)$.
d. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV, $\mathrm{K}^{\text {-bit } \mathrm{TEXT}_{\mathrm{i}} \text {, and the resulting K-bit } \text { RESULT }_{\mathrm{i}} \text { to the }}$ TMOVS as specified in Output Type 2.
e. Set $\mathrm{KEY} 1_{i+1}, \mathrm{KEY} 2_{i+1}$, and $\mathrm{KEY} 3_{i+1}$ equal to the corresponding $\mathrm{KEY}_{\mathrm{i}+1}$ supplied by the TMOVS.
f. Set $\mathrm{IV}_{\mathrm{i}+1}$ equal to the corresponding DATA $_{\mathrm{i}+1}$ supplied by the TMOVS.

NOTE -- The above processing should continue until all 19 KEY-DATA are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.4. For IUTs where K is less than 64, the leftmost K bits of output for each RESULT value in the Table A. 4 are used.

5.4.2 The Monte Carlo Tests - TCFB Mode

The Monte Carlo Tests required to validate an IUT for the TCFB mode of operation are determined by the process or processes allowed by an IUT. The K-bit TCFB Monte Carlo Test for the Encryption Process is successfully completed if an IUT supports the encryption process of the TCFB mode of operation. The K-bit TCFB Monte Carlo Test for the Decryption Process is successfully completed if an IUT supports the decryption process.

5.4.2.1 The Monte Carlo Test for the Encryption Process - TCFB Mode

Table 42 The Monte Carlo Test for the Encryption Process - TCFB Mode

As summarized in Table 42, the Monte Carlo Test for the TCFB Encryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3, the initialization vector IV, and the plaintext P variables. The IV, and KEYs consist of 64 bits each. The P is represented as K -bits, where $\mathrm{K}=1, \ldots, 64$.
b. Forwards this information to the IUT using Input Type 21.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. If $\mathrm{i}=0$ (if this is the first time through this loop), assign the value of the initialization vector IV to the input block I_{i}.
b. Record the current values of the output loop number i, KEY1 $1_{i}, K E Y 2_{i}, K E Y 3_{i}$, and the K-bit P_{0}.
c. Perform the following for $\mathrm{j}=0$ through 9999:
1) Using the corresponding $K E Y 1_{i}, \mathrm{KEY}_{\mathrm{i}}$, and KEY_{i} values, process I_{j} through the three DEA stages resulting in output block O_{j}. This involves processing I_{j} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 1_{i}, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY 2_{i}, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in output block O_{j}.
2) Calculate the K -bit C_{j} by exclusive-ORing the leftmost K -bits of O_{j}, $L^{K}\left(O_{j}\right)$, with the K-bit P_{j}, i.e., $\left(C^{1}{ }_{j}, C^{2}{ }_{j}, \ldots, C^{K}{ }_{j}\right)=\left(\mathrm{O}^{1}{ }_{j} \oplus P^{1}{ }_{j}, \mathrm{O}^{2}{ }_{j} \oplus \mathrm{P}^{2}{ }_{j}, \ldots\right.$, $\mathrm{O}^{\mathrm{K}}{ }_{\mathrm{j}} \oplus \mathrm{P}^{\mathrm{K}}{ }_{\mathrm{j}}$.
3) Prepare for loop $\mathrm{j}+1$ by doing the following:
a) Assign the K-bit $\mathrm{P}_{\mathrm{j}+1}$ with the value of the leftmost K -bits of the I_{j}, i.e., $\left(P^{1}{ }_{j+1}, P^{2}{ }_{j+1}, \ldots, P^{K}{ }_{j+1}\right)=\left(I^{1}{ }_{j}, I_{j}^{2}, \ldots, I^{K}{ }_{j}\right)$.
b) Assign $\mathrm{I}_{\mathrm{j}+1}$ with the value of the concatenation of the rightmost (64K) bits of I_{j} with the K-bit C_{j}, i.e., $\left(I^{1}{ }_{j+1}, I_{j+1}^{2}, \ldots, I^{64}{ }_{j+1}\right)=\left(I^{[K+1]}{ }_{j}\right.$, $\left.I^{[K+2]}{ }_{j}, \ldots, I^{64}{ }_{j}, C^{1}{ }_{j}, C^{2}{ }_{j}, \ldots, C^{K}{ }_{j}\right)$.
d. Record the K-bit C_{j} and I_{0}.
e. Forward all recorded values for this loop, as specified in Output Type 6, to the TMOVS.
f. In preparation for the next output loop:
4) Assign new values to the KEY parameters KEY1, KEY2, and KEY3. This is accomplished by exclusive-ORing C with the KEY value to obtain the
new KEY. If the length of the C is less than 64 (the length of a DES key), then C should be expanded in length to $64 * 3$ (to correspond to the combined lengths of KEY1+KEY2+KEY3) before forming the new KEY values. This expansion should be accomplished by concatenating X of the most current Cs together to obtain 192 bits of C. For example, if the length of the C is 50 bits ($K=50$), the expanded $\mathrm{C}=\left(\mathrm{C}^{9}{ }_{9996}, \ldots, \mathrm{C}^{50}{ }_{9996}, \mathrm{C}^{1}{ }_{9997}, \ldots\right.$, $\left.\mathrm{C}^{50}{ }_{9997}, \mathrm{C}^{1}{ }_{9998}, \ldots, \mathrm{C}^{50}{ }_{9998}, \mathrm{C}^{1}{ }_{9999}, \ldots, \mathrm{C}^{50}{ }_{9999}\right)$.

Bits 129-192 of the expanded C will be exclusive-ORed with KEY1 to form the new KEY1.

The calculation of the new KEY2 and KEY3 are based on the values of the keys. . If $\mathrm{KEY} 1_{i}$ and $\mathrm{KEY} 2_{i}$ are independent and $\mathrm{KEY} 3_{i}=K E Y 1_{i}$, or KEY1, KEY2 and KEY3 are independent, the new KEY2 should be calculated by exclusive-ORing the current KEY2 with bits 65-128 of the expanded C. If KEY1=KEY2=KEY3, the current KEY2 will be exclusiveORed with bits 129-192 of the expanded C to calculate the new KEY2.

If KEY1, KEY2, and KEY3 are independent, the new KEY3 should be calculated by exclusive-ORing the current KEY3 with bits 1-64 of the expanded C. Otherwise, the current KEY3 will be exclusive-ORed with bits 129-192 of the expanded C to calculate the new KEY3.
2) Assign a new value to the K-bit P_{0}. The K-bit P_{0} should be assigned the value of the leftmost K -bits of the current I_{j}, i.e., $\left(\mathrm{P}^{1}{ }_{0}, \mathrm{P}^{2}{ }_{0}, \ldots, \mathrm{P}^{\mathrm{K}}{ }_{0}\right)=\left(\mathrm{I}_{\mathrm{j}}{ }^{1}\right.$, $\left.I_{j}^{2}, \ldots, I_{j}^{K}\right)$. Note $\mathrm{j}=9999$.
3) Assign a new value to $\mathrm{I}_{0} . \mathrm{I}_{0}$ should be assigned the value of the rightmost (64-K) bits of the current I_{j} concatenated with the current K-bit C_{j}, i.e., $\left(I^{1}{ }_{0}, I^{2}{ }_{0}, \ldots, I^{64}{ }_{0}\right)=\left(I^{[K+1]}{ }_{j}, I^{[\mathrm{K}+2]}{ }_{\mathrm{j}}, \ldots, I^{64}{ }_{\mathrm{j}}, \mathrm{C}^{1}{ }_{\mathrm{j}}, \mathrm{C}^{2}{ }_{\mathrm{j}}, \ldots, \mathrm{C}^{\mathrm{K}}{ }_{\mathrm{j}}\right)$. Note $\mathrm{j}=9999$.

NOTE -- the new P and I should be denoted as P_{0} and I_{0} because these values are used for the first pass through the inner loop when $\mathrm{j}=0$.

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 6.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

Table 43 The Monte Carlo Test for the Decryption Process - TCFB Mode

$$
\begin{aligned}
& \mathrm{KEY1}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \text { bits } 129-192 \text { of } \mathrm{P} \\
& \text { IF }\left(\mathrm{KEY} 1_{\mathrm{i}} \text { and } \mathrm{KEY} 2_{\mathrm{i}} \text { are independent and } \mathrm{KEY} 3_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}\right) \text { or }\left(\mathrm{KEY} 1_{\mathrm{i}}\right. \text {, } \\
& \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{3} \text { are independent), } \\
& K E Y 2_{i+1}=K E Y 2_{i} \oplus \text { bits } 65-128 \text { of } \mathrm{P} \\
& \mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \text { bits } 129-192 \text { of } \mathrm{P} \\
& \text { IF }\left(\mathrm{KEY}_{1}=\mathrm{KEY} 2_{\mathrm{i}}=\mathrm{KEY} 3_{\mathrm{i}}\right) \text { or }\left(\mathrm{KEY} 1_{\mathrm{i}} \text { and } \mathrm{KEY} 2_{\mathrm{i}}\right. \text { are independent and } \\
& \mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}} \text {), } \\
& \mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \text { bits } 129-192 \text { of } \mathrm{P} \\
& \mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \text { bits } 1-64 \text { of } \mathrm{P} \\
& \mathrm{I}_{0}=\mathrm{RM}^{(64-\mathrm{K})}\left(\mathrm{I}_{\mathrm{j}}\right) \| \text { K-bit } \mathrm{C}_{\mathrm{j}} \\
& \text { K-bit } \mathrm{C}_{0}=\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O}_{\mathrm{j}}\right) \\
& \text { \} } \\
& \text { TMOVS: Check the IUT's output for correctness. }
\end{aligned}
$$

As summarized in Table 43, the Monte Carlo Test for the TCFB Decryption Process is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3, the initialization vector IV, and the ciphertext C variables. The IV and KEYs consist of 64 bits each. The C is represented as K -bits, where $\mathrm{K}=1, \ldots, 64$.
b. Forwards this information to the IUT using Input Type 21.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. If $i=0$ (if this is the first time through this loop), assign the value of the initialization vector IV to the input block I_{i}.
b. Record the current values of the output loop number i, KEY1 $1_{i}, K E Y 2_{i}, \mathrm{KEY}_{\mathrm{i}}$, and the K -bit C_{0}.
c. Perform the following for $\mathrm{j}=0$ through 9999:
1) Using the corresponding $\mathrm{KEY}_{1}, \mathrm{KEY}_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ values, process I_{j} through the three DEA stages resulting in output block O_{j}. This involves processing I_{j} through the first DEA stage, denoted DEA_{1}, in the encrypt state using KEY1 ${ }_{\mathrm{i}}$, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted DEA_{2}, in the decrypt state using KEY 2_{i}, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted DEA_{3}, in the encrypt state using $K E Y 3_{i}$, resulting in output block O_{j}.
2) Calculate the K-bit P_{j} by exclusive-ORing the leftmost K-bits of O_{j}, $\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O}_{\mathrm{j}}\right)$, with the K-bit C_{j}, i.e., $\left(\mathrm{P}_{\mathrm{j}}^{1}, \mathrm{P}^{2}{ }_{\mathrm{j}}, \ldots, \mathrm{P}_{\mathrm{j}}^{\mathrm{K}}\right)=\left(\mathrm{O}_{\mathrm{j}}^{1} \oplus \mathrm{C}_{\mathrm{j}}^{1}, \mathrm{O}^{2}{ }_{\mathrm{j}} \oplus \mathrm{C}_{\mathrm{j}}^{2}, \ldots\right.$, $\mathrm{O}^{\mathrm{K}}{ }_{\mathrm{j}} \oplus \mathrm{C}_{\mathrm{j}}^{\mathrm{K}}{ }^{\mathrm{j}}$.
3) Prepare for loop $\mathrm{j}+1$ by doing the following:
a) Assign $\mathrm{I}_{\mathrm{j}+1}$ with the value of the concatenation of the rightmost (64K) bits of I_{j} with the K-bit C_{j}, i.e., $\left(I^{1}{ }_{j+1}, I_{j+1}^{2}, \ldots, I^{64}{ }_{j+1}\right)=\left(I^{[K+1]}{ }_{j}\right.$, $\left.I^{[K+2]}{ }_{j}, \ldots, I^{64}{ }_{\mathrm{j}}, \mathrm{C}^{1}{ }_{\mathrm{j}}, \mathrm{C}_{\mathrm{j}}^{2}, \ldots, \mathrm{C}^{\mathrm{K}}{ }_{\mathrm{j}}\right)$.
b) Assign the K-bit $\mathrm{C}_{\mathrm{j}+1}$ with the value of the leftmost K -bits of the O_{j}, i.e., $\left(\mathrm{C}^{1}{ }_{\mathrm{j}+1}, \mathrm{C}^{2}{ }_{\mathrm{j}+1}, \ldots, \mathrm{C}^{\mathrm{K}}{ }_{\mathrm{j}+1}\right)=\left(\mathrm{O}_{\mathrm{j}}^{1}, \mathrm{O}^{2}{ }_{\mathrm{j}}, \ldots, \mathrm{O}^{\mathrm{K}}{ }_{\mathrm{j}}\right)$.
d. Record the K-bit P_{j} and I_{0}.
e. Forward all recorded values for this loop, as specified in Output Type 6, to the TMOVS.
f. In preparation for the next output loop:
4) Assign new values to the KEY parameters KEY1, KEY2, and KEY3. This is accomplished by exclusive-ORing P with the KEY value to obtain the new KEY. If the length of the P is less than 64 (the length of a DES key), then P should be expanded in length to $64 * 3$ (to correspond to the combined lengths of KEY1+KEY2+KEY3) before forming the new KEY values. This expansion should be accomplished by concatenating X of the most current Ps together to obtain 192 bits of P. For example, if the length of the P is 50 bits ($K=50$), the expanded $\mathrm{P}=\left(\mathrm{P}^{9}{ }_{9996}, \ldots, \mathrm{P}^{50}{ }_{9996}, \mathrm{P}^{1}{ }_{9997}, \ldots\right.$, $\left.\mathrm{P}^{50}{ }_{9997}, \mathrm{P}^{1}{ }_{9998}, \ldots, \mathrm{P}^{50}{ }_{9998}, \mathrm{P}^{1}{ }_{9999}, \ldots, \mathrm{P}^{50}{ }_{9999}\right)$.

Bits 129-192 of the expanded P will be exclusive-ORed with KEY1 to form the new KEY1.

The calculation of the new KEY2 and KEY3 are based on the values of the keys. . If $\mathrm{KEY} 1_{i}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{1}$, or KEY1, KEY2 and KEY3 are independent, the new KEY2 should be
calculated by exclusive-ORing the current KEY2 with bits 65-128 of the expanded P. If KEY1=KEY2=KEY3, the current KEY2 will be exclusiveORed with bits 129-192 of the expanded P to calculate the new KEY2.

If KEY1, KEY2, and KEY3 are independent, the new KEY3 should be calculated by exclusive-ORing the current KEY3 with bits 1-64 of the expanded P. Otherwise, the current KEY3 will be exclusive-ORed with bits 129-192 of the expanded P to calculate the new KEY3.
2) Assign a new value to $\mathrm{I}_{0} . \mathrm{I}_{0}$ should be assigned the value of the rightmost ($64-\mathrm{K}$) bits of the current I_{j} concatenated with the current K -bit C_{j}, i.e., $\left(I^{1}{ }_{0}, I^{2}, \ldots, I^{64}{ }_{0}\right)=\left(I^{[K+1]}{ }_{j}, I^{[K+2]}, \ldots, I_{j}^{64}, C^{1}{ }_{j}, C^{2}{ }_{j}, \ldots, C^{K}{ }_{j}\right)$. Note $j=9999$.
3) Assign a new value to the K -bit C_{0}. The K -bit C_{0} should be assigned the value of the leftmost K -bits of the current O_{j}, i.e., $\left(\mathrm{C}^{1}{ }_{0}, \mathrm{C}^{2}{ }_{0}, \ldots, \mathrm{C}^{\mathrm{K}}{ }_{0}\right)=\left(\mathrm{O}^{1}{ }_{\mathrm{j}}\right.$, $\mathrm{O}^{2}{ }_{\mathrm{j}}, \ldots, \mathrm{O}^{\mathrm{K}}{ }_{\mathrm{j}}$). Note $\mathrm{j}=9999$.

NOTE -- the new C and I should be denoted as C_{0} and I_{0} because these values are used for the first pass through the inner loop when $\mathrm{j}=0$.

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 6.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

5.5 The Cipher Feedback (CFB-P) Mode

The IUTs that implement the Cipher Block Feedback - Pipelined (CFB-P) mode of operation are validated by successfully completing (1) a set of Known Answer tests applicable to both IUTs supporting encryption and/or decryption and (2) a Monte Carlo test designed for use with both the encryption process and the decryption process.

The pipelined configuration is intended for systems equipped with multiple DEA processors. By pipelining the data, throughput is improved and propagation delay is minimized by initializing the three individual DEA stages and then simultaneously clocking them. Thus, with each clock cycle, data is processed by each $\mathrm{DEA}_{\mathrm{i}}$ stage and passed onward to the output buffer or the next stage so that idle DEA_{i} stages are minimized.

The processing for each Known Answer test and Monte Carlo test is broken down into clock cycles T1, T2, T3,.... Within each clock cycle, the processing occurring on each active DEA is discussed. For convenience, let KEY1 represent the key used on processor DEA ${ }_{1}$, KEY2 represent the key used on processor DEA_{2}, and KEY3 represent the key used on processor DEA_{3}.

The process of validating an IUT which only supports the K-bit TCFB-P mode in either the encryption and/or decryption processes involves the successful completion of the following six tests:

1. The Variable Text Known Answer Test - K-bit TCFB-P mode
2. The Inverse Permutation Known Answer Test - K-bit TCFB-P mode
3. The Variable Key Known Answer Test - K-bit TCFB-P mode
4. The Permutation Operation Known Answer Test - K-bit TCFB-P mode
5. The Substitution Table Known Answer Test - K-bit TCFB-P mode
6. The Monte Carlo Test - K-bit TCFB-P mode

NOTE -- for IUTs, K can range from 1 to 64 bits.
The notation $L^{K}(A)$ refers to the leftmost K bits of A.
An explanation of the tests follows.

5.5.1 The Known Answer Tests - TCFB-P Mode

The K-bit TCFB-P mode has only one set of Known Answer tests which are used regardless of process, i.e., the same set of Known Answer tests are used for IUTs supporting the encryption and/or decryption processes.

Throughout this section, TEXT and RESULT will refer to different variables depending on whether the encryption or decryption process is being tested. If the IUT performs TCFB-P encryption, TEXT refers to plaintext, and RESULT refers to ciphertext. If the IUT performs TCFB-P decryption, TEXT refers to ciphertext, and RESULT refers to plaintext.

5.5.1.1 The Variable TEXT Known Answer Test - TCFB-P Mode

Table 44 The Variable TEXT Known Answer Test - TCFB-P Mode


```
                    TEMP2 2 is decrypted by DEA 2 using KEY2, resulting in
                    TEMP22
Connect the feedback path:
TEMP \(1_{2}\) is encrypted by \(\mathrm{DEA}_{3}\) using KEY3, resulting in \(\mathrm{O}_{1}\) K-bit RESULT \(1_{\mathrm{i}}=\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O1}_{\mathrm{i}}\right) \oplus\) K-bit TEXT
T4: \(\mathrm{TEMP}_{1}\) is decrypted by \(\mathrm{DEA}_{2}\) using KEY2, resulting in TEMP \(_{2}\)
TEMP \(_{2}\) is encrypted by \(\mathrm{DEA}_{3}\) using KEY3, resulting in \(\mathrm{O}_{2}\) K-bit \(\operatorname{RESULT}_{\mathrm{i}}=\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O} 2_{\mathrm{i}}\right) \oplus\) K-bit TEXT
T5: \(\quad\) TEMP3 \(3_{2}\) is encrypted by \(\mathrm{DEA}_{3}\) using KEY3, resulting in \(\mathrm{O} 3_{i}\) K-bit RESULT3 \(_{i}=\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O}_{\mathrm{i}}\right) \oplus\) K-bit TEXT
Send i, KEY (representing KEY1, KEY2, and KEY3), I1, I2, I3, K-bit TEXT, K-bit RESULT1 \(1_{\mathrm{i}}\), K-bit RESULT \(2_{\mathrm{i}}\), K-bit RESULT3 \({ }_{\mathrm{i}}\)
IV \(1_{i+1}=\) basis vector where single " 1 " bit is in position \(\mathrm{i}+1\)
\(\mathrm{IV} 2_{\mathrm{i}+1}=\mathrm{IV} 1_{\mathrm{i}}+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\)
\(\mathrm{IV} 3_{\mathrm{i}+1}=\mathrm{IV} 1_{\mathrm{i}}+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\) AAAAAAAAAAAAAAAA
\}
```

TMOVS: Compare RESULT1, RESULT2, and RESULT3 from each loop with known answers.

Use K bits of output in Table A.9.

As summarized in Table 44, the Variable TEXT Known Answer Test for the TCFB-P mode of operation is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., $K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101$ 010101010101.
b. Initializes the 3 initialization vectors accordingly: IV1 1_{1} is set to the basis vector containing a" 1 " in the first bit position and " 0 " in the following 63 positions, i.e., $\mathrm{IV}_{1 \text { bin }}=1000$ 00000000. The equivalent of this value in hexadecimal notation is 8000000000 000000 . Based on specifications in ANSI X9.52-1998, IV2 ${ }_{1}$ is computed by the following equation: $\mathrm{IV} 1_{1}+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=5555555555555555$. In hexadecimal, this equates to D5 55555555555555 . And IV_{1} is computed by the equation $\operatorname{IV} 1_{1}+\mathrm{R}_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAAA. In hexadecimal, this equates to 2A AA AA AA AA AA AA AA.
c. Initializes the K-bit TEXT parameter to the constant hexadecimal value 0 , i.e., $\mathrm{TEXT}_{\text {hex }}=0000000000000000$.
d. Forwards this information to the IUT using Input Type 13.
2. The IUT should perform the following for $\mathrm{i}=1$ through 64 :
a. With the feedback path disconnected:
1) At time T 1 :
a) Assign the value of the initialization vector $\operatorname{IV} 1_{i}$ to the input block I1.
b) Process I1 through the DEA stage DEA_{1} in the encrypt state using KEY1, resulting in intermediate value TEMP1 1_{1}.

At time T2:
a) Assign the value of the initialization vector IV2 2_{i} to the input block I2.
b) Process I2 through the DEA stage DEA_{1} in the encrypt state using KEY1, resulting in intermediate value TEMP 2_{1}.
c) TEMP1 1_{1} is fed into the DEA stage DEA_{2} in the decrypt state using KEY2, resulting in intermediate value $\mathrm{TEMP1}_{2}$.

At time T3:
a) Assign the value of the initialization vector $\mathrm{IV} 3_{\mathrm{i}}$ to the input block I3.
b) Process I3 through the DEA stage DEA_{1} in the encrypt state using KEY1, resulting in intermediate value TEMP3 ${ }_{1}$.
c) $\quad \mathrm{TEMP}_{1}$ is fed into the DEA stage DEA_{2} in the decrypt state using KEY2, resulting in intermediate value TEMP $2{ }_{2}$.

Connect the feedback path:
d) $\mathrm{TEMP1}_{2}$ is fed into the DEA stage DEA_{3} in the encrypt state using KEY3, resulting in output block $\mathrm{O} 1_{i}$.
e) Calculate the K-bit RESULT1 1_{i} by exclusive-ORing the leftmost K bits of O_{i} with the K-bit TEXT.

At time T4:
a) TEMP_{2} is fed into the DEA stage DEA_{3} in the encrypt state using KEY3, resulting in output block $\mathrm{O} 2_{2}$.
b) Calculate the K-bit RESULT2 2_{i} by exclusive-ORing the leftmost Kbits of $\mathrm{O} 2_{\mathrm{i}}$ with the K-bit TEXT.
c) TEMP_{1} is fed into the DEA stage DEA_{2} in the decrypt state using KEY2, resulting in intermediate value TEMP3 ${ }_{2}$.

At time T5:
a) TEMP_{2} is fed into the DEA stage DEA_{3} in the encrypt state using KEY3, resulting in output block $\mathrm{O3}_{\mathrm{i}}$.
b) Calculate the K-bit RESULT3 3_{i} by exclusive-ORing the leftmost Kbits of $\mathrm{O} 3_{\mathrm{i}}$ with the K-bit TEXT.
b. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV $1_{\mathrm{i}}, \mathrm{IV} 2_{\mathrm{i}}, \mathrm{IV} 3_{\mathrm{i}}$, K-bit TEXT, K-bit RESULT 1_{i}, K-bit RESULT2 $_{\mathrm{i}}$, and K-bit RESULT3 ${ }_{\mathrm{i}}$, to the TMOVS as specified in Output Type 7.
c. Retain the K-bit RESULT1, RESULT2, and RESULT3 values for use with the Inverse Permutation Known Answer Test for the TCFB-P Mode (Section 5.5.1.2).
d. Assign a new value to the IV variables. IV1 1_{i+1} is set to the value of a basis vector with a " 1 " bit in position $i+1$, where $i+1=2, \ldots, 64$. IV 2_{i+1} is set to the value of $\mathrm{IV} 1_{i+1}$ $+R_{1} \bmod 2^{64}$ where $R_{1}=5555555555555555$. And IV 3_{i+1} is set to $I V 1_{i+1}+R_{2} \bmod$ 2^{64} where $R_{2}=A A A A A A A A A A A A A A A A . ~$

NOTE -- This continues until every possible basis vector has been represented by the IV1, i.e., 64 times. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 7.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.9. For IUTs where K is less than 64 , the leftmost K bits of output for each RESULT value in the Table A. 9 are used.

5.5.1.2 The Inverse Permutation Known Answer Test - TCFB-P Mode

Table 45 The Inverse Permutation Known Answer Test - TCFB-P Mode


```
        TEMP1 2 is encrypted by DEA 
    K-bit RESULT1 }\mp@subsup{1}{\textrm{i}}{= LM}\mp@subsup{}{}{\textrm{K}}(\textrm{O}\mp@subsup{1}{\textrm{i}}{\prime})\oplus\mathrm{ K-bit TEXT1 }\mp@subsup{1}{\textrm{i}}{
    T4: TEMP3 3 is decrypted by DEA }\mp@subsup{2}{2}{}\mathrm{ using KEY2, resulting in
        TEMP3}\mp@subsup{2}{2}{
        TEMP2 2 is encrypted by DEA }\mp@subsup{A}{3}{}\mathrm{ using KEY3, resulting in O2 2
        K-bit RESULT2 }\mp@subsup{2}{\textrm{i}}{= LM}\mp@subsup{}{}{\textrm{K}}(\textrm{O}2\mp@subsup{2}{\textrm{i}}{})\oplus\mathrm{ K-bit TEXT2 }\mp@subsup{2}{\textrm{i}}{
    T5: TEMP3 2 is encrypted by DEA 3
        K-bit RESULT3 }\mp@subsup{}{\textrm{i}}{=}=\mp@subsup{\textrm{LM}}{}{\textrm{K}}(\textrm{O}\mp@subsup{3}{\textrm{i}}{})\oplus\mathrm{ K-bit TEXT3}\mp@subsup{}{\textrm{i}}{
        Send i, KEY (representing KEY1, KEY2, and KEY3), I1, I2, I3, K-bit
```



```
        RESULT2, , K-bit RESULT3i
        IV }\mp@subsup{1}{i+1}{}=\mathrm{ basis vector where single "1" bit is in position i+1
        IV}\mp@subsup{2}{i+1}{}=IV\mp@subsup{1}{i}{}+\mp@subsup{R}{1}{}\operatorname{mod}\mp@subsup{2}{}{64}\mathrm{ where }\mp@subsup{R}{1}{}=5555555555555555
        IV}\mp@subsup{3}{i+1}{}=IV\mp@subsup{1}{i}{}+\mp@subsup{R}{2}{}\operatorname{mod}\mp@subsup{2}{}{64}\mathrm{ where R R =AAAAAAAAAAAAAAAA
        K-bit TEXTr }\mp@subsup{\textrm{T}}{\textrm{i}1}{}\mathrm{ (where r = 1..3)= corresponding K-bit RESULTri}\mp@subsup{\textrm{i}}{\textrm{i}1}{}\mathrm{ value
        from the TMOVS
    }
TMOVS: Compare RESULT1, RESULT2, and RESULT3 from each loop with known
They should be all zeros.
``` answers,

As summarized in Table 45 the Inverse Permutation Known Answer Test for the TCFB-P mode of operation is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., \(K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=01010101010101\) 01.
b. Initializes the 3 initialization vectors accordingly: \(\operatorname{IV} 1_{1}\) is set to the basis vector containing a" 1 " in the first bit position and " 0 " in the following 63 positions, i.e., \(\mathrm{IV}_{1 \mathrm{bin}}\)
\(=1000\)
00000000. The equivalent of this value in hexadecimal notation is 800000000000 0000 . Based on specifications in ANSI X9.52-1998, IV2 \(1_{1}\) is computed by the following equation: IV \(1_{1}+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=555555555555555\). In hexadecimal, this equates to D5 55555555555555 . And \(\mathrm{IV}_{1}\) is computed by the equation \(\mathrm{IV} 1_{1}+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\mathrm{AAAAAAAAAAAAAAAA}\). In hexadecimal, this equates to 2 A AA AA AA AA AA AA AA.
c. Initializes the K-bit TEXTr \(\mathrm{T}_{\mathrm{i}}\) (where \(\mathrm{r}=1, \ldots, 3\) and \(\mathrm{i}=1, \ldots, 64\)) to the RESULTr \({ }_{i}\) obtained from the Variable TEXT Known Answer Test.
d. Forwards this information to the IUT using Input Type 15.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 64 :
a. With the feedback path disconnected:
1) At time T 1 :
a) Assign the value of the initialization vector \(\operatorname{IV} 1_{i}\) to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP \(1_{1}\).

At time T2:
a) Assign the value of the initialization vector \(\operatorname{IV} 2_{i}\) to the input block I2.
b) Process I2 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP2 \({ }_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY 2 , resulting in intermediate value \(\mathrm{TEMP1}_{2}\).

At time T3:
a) Assign the value of the initialization vector \(\mathrm{IV} 3_{\mathrm{i}}\) to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP3 \({ }_{1}\).
c) \(\quad \mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2, resulting in intermediate value \(\mathrm{TEMP}_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the K-bit RESULT1 \(1_{\mathrm{i}}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O1}_{\mathrm{i}}\) with the K-bit \(\mathrm{TEXT}_{\mathrm{i}}\).

At time T4:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{O} 2_{2}\).
b) Calculate the K-bit RESULT2 \(2_{\mathrm{i}}\) by exclusive-ORing the leftmost Kbits of \(\mathrm{O} 2_{\mathrm{i}}\) with the K-bit TEXT2 \({ }_{\mathrm{i}}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2, resulting in intermediate value TEMP3 \({ }_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{O3}_{\mathrm{i}}\).
b) Calculate the K-bit RESULT3 \(_{\mathrm{i}}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O}_{\mathrm{i}}\) with the K-bit \(\mathrm{TEXT}_{\mathrm{i}}\).
b. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV \(1_{i}\), IV \(2_{i}\), IV \(3_{i}\), K-bit TEXT \(1_{i}\), K-bit TEXT \(2_{i}\), K-bit TEXT3 \(3_{i}\), K-bit RESULT1 \({ }_{i}\), K-bit RESULT2 \({ }_{i}\), and K-bit RESULT3 \({ }_{i}\), to the TMOVS as specified in Output Type 3.
c. Assign a new value to the IV variables. IV1 \(1_{i+1}\) is set to the value of a basis vector with a " 1 " bit in position \(i+1\), where \(i+1=2, \ldots, 64\). IV \(2_{i+1}\) is set to the value of IV \(1_{i+1}+R_{1} \bmod 2^{64}\) where \(R_{1}=5555555555555555\). And IV \(3_{i+1}\) is set to \(I V 1_{i+1}+\) \(\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=A A A A A A A A A A A A A A A A\).
d. Assign a new value to the K-bit TEXT1 \(1_{i+1}\), K-bit TEXT2 \(_{i+1}\), and K-bit TEXT3 \({ }_{i+1}\) by setting it equal to the corresponding output from the TMOVS.

NOTE -- This continues until every RESULT1, RESULT2, and RESULT3 value from the Variable TEXT Known Answer Test has been used as input. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values. The RESULT1, RESULT2, and RESULT3 values should be all zeros.

\subsection*{5.5.1.3 The Variable KEY Known Answer Test - TCFB-P Mode}

Table 46 The Variable KEY Known Answer Test - TCFB-P Mode

As summarized in Table 46, the Variable KEY Known Answer Test for the TCFB-P Mode is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters \(\mathrm{KEY}_{1}, \mathrm{KEY}_{1}\), and \(\mathrm{KEY}_{1}\) to contain " 0 " in every significant bit except for a " 1 " in the first position, i.e., the 64 -bit \(\mathrm{KEY} 1_{1 \text { bin }}=\) \(K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001\) 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or " 1 " to get odd parity.
b. Initializes the 3 initialization vectors accordingly: IV1 is assigned the value 0 , i.e., IV \(1_{\text {hex }}=0000000000000000\). Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: IV1 \(+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\). In hexadecimal, this equates to 5555555555555555. And IV3 is computed by the equation IV \(1+\mathrm{R}_{2} \bmod 2^{64}\) where
\(\mathrm{R}_{2}=\mathrm{AAAAAAAAAAAAAAAA}\). In hexadecimal, this equates to AA AA AA AA AA AA AA AA.
c. Initializes the K-bit TEXT parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{TEXT}_{\text {hex }}=0000000000000000\).
d. Forwards this information to the IUT using Input Type 13.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 64 :
a. With the feedback path disconnected:
1) At time T :
a) Assign the value of the initialization vector IV1 to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP1 \(1_{1}\).

At time T2:
a) Assign the value of the initialization vector IV2 to the input block I2.
b) Process I2 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(2_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2_{i}\), resulting in intermediate value TEMP1 \({ }_{2}\).

At time T3:
a) Assign the value of the initialization vector IV3 to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value \(\mathrm{TEMP}_{1}\).
c) TEMP \(2_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2\), resulting in intermediate value TEMP2 \({ }_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP1}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the K-bit \(\operatorname{RESULT}_{1}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O}_{\mathrm{i}}\) with the K-bit TEXT.

At time T4:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O} 2_{\mathrm{i}}\).
b) Calculate the K-bit RESULT2 \(_{\mathrm{i}}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O} 2_{\mathrm{i}}\) with the K-bit TEXT.
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in intermediate value \(\mathrm{TEMP}_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{3}\).
b) Calculate the K-bit RESULT3 \(_{3}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O}_{\mathrm{i}}\) with the K-bit TEXT.
b. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY} 1_{\mathrm{i}}\), KEY2 \(2_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\)), IV1, IV2, IV3, K-bit TEXT, K-bit RESULT1 \(1_{\mathrm{i}}\), K-bit RESULT \(_{\mathrm{i}}\), and K-bit RESULT3 3 , to the TMOVS as specified in Output Type 7.
c. Set \(K E Y 1_{i+1}, \mathrm{KEY}_{\mathrm{i}+1}\), and \(\mathrm{KEY} 3_{\mathrm{i}+1}\) equal to the vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position \(\mathrm{i}+1\). The parity bits contain " 1 " or " 0 " to make odd parity.

NOTE -- This processing should continue until every significant basis vector has been represented by the KEY parameters. The output from the IUT should consist of 56 output strings. Each output string should consist of information included in Output Type 7.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.11. For IUTs where K is less than 64, the leftmost K bits of output for each RESULT value in the Table A. 11 are used.

\subsection*{5.5.1.4 The Permutation Operation Known Answer Test - TCFB-P Mode}

Table 47 The Permutation Operation Known Answer Test - TCFB-P Mode

As summarized in Table 47, the Permutation Operation Known Answer Test for the TCFB-P mode of operation is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 with the 32 constant KEY values from Table A. 12.
b. Initializes the 3 initialization vectors accordingly: IV1 is assigned the value 0 , i.e., \(\mathrm{IV}_{\text {hex }}=0000000000000000\). Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: IV1 \(+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\). In hexadecimal, this equates to 5555555555555555. And IV3 is computed by the equation IV1 \(+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=A A A A A A A A A A A A A A A A\). In hexadecimal, this equates to AA AA AA AA AA AA AA AA.
c. Initializes the K-bit TEXT parameter to the constant hexadecimal value 0, i.e., \(\mathrm{TEXT}_{\text {hex }}=0000000000000000\).
d. Forwards this information to the IUT using Input Type 18.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 32 :
a. With the feedback path disconnected:
1) At time T 1 :
a) Assign the value of the initialization vector IV1 to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(1_{1}\).

At time T2:
a) Assign the value of the initialization vector IV2 to the input block I2.
b) Process I2 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP2 \({ }_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2_{i}\), resulting in intermediate value \(\mathrm{TEMP}_{2}\).

At time T3:
a) Assign the value of the initialization vector IV3 to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(3_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in intermediate value TEMP2 \({ }_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the K-bit RESULT1 \(1_{\mathrm{i}}\) by exclusive-ORing the leftmost Kbits of \(\mathrm{O1}_{\mathrm{i}}\) with the K-bit TEXT.

At time T4:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O} 2_{\mathrm{i}}\).
b) Calculate the K-bit RESULT2 \(2_{\mathrm{i}}\) by exclusive-ORing the leftmost Kbits of \(\mathrm{O} 2_{\mathrm{i}}\) with the K-bit TEXT.
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(\mathrm{KEY} 2_{\mathrm{i}}\), resulting in intermediate value TEMP3 \({ }_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{\mathrm{i}}\).
b) Calculate the K-bit RESULT3 \(_{\mathrm{i}}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O} 3_{\mathrm{i}}\) with the K-bit TEXT.
b. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{\mathrm{i}}\), KEY \(2_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\)), IV1, IV2, IV3, K-bit TEXT, K-bit RESULT1 \(1_{\mathrm{i}}\), K-bit RESULT \(_{\mathrm{i}}\), and K-bit RESULT3 \({ }_{\mathrm{i}}\), to the TMOVS as specified in Output Type 7.
c. Set \(\mathrm{KEY}_{1+1}, \mathrm{KEY}_{\mathrm{i}+1}\), and \(\mathrm{KEY}_{i_{i+1}}\) equal to the corresponding \(\mathrm{KEY}_{\mathrm{i}+1}\) supplied by the TMOVS.

NOTE -- The above processing should continue until all 32 KEY values are processed. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 7.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found Table A.12. For IUTs where K is less than 64 , the leftmost K bits of output for each RESULT value in Table A. 12 are used.

\subsection*{5.5.1.5 The Substitution Table Known Answer Test - TCFB-P Mode}

Table 48 The Substitution Table Known Answer Test - TCFB-P Mode

As summarized in Table 48, the Substitution Table Known Answer Test for the TCFB-P Mode is performed as follows:
1. The TMOVS:
a. Initializes the KEY-IV1 pairs with the 19 constant KEY-DATA values from Table A.10. The DATA values are assigned to the values of the initialization vectors IV \(1_{i}\). The KEY value indicates the values of \(K E Y 1_{i}, K E Y 2_{i}\), and \(K E Y 3_{i}\), i.e., \(K E Y 1_{i}=K E Y 2_{i}=\mathrm{KEY}_{\mathrm{i}}\). Based on specifications in ANSI X9.52-1998, IV \(2_{i}\) is set to \(\operatorname{IV} 1_{i}+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\) and \(\mathrm{IV} 3_{\mathrm{i}}\) is set to \(\mathrm{IV} 1_{\mathrm{i}}+\mathrm{R}_{2}\) \(\bmod 2^{64}\) where \(\mathrm{R}_{2}=A A A A A A A A A A A A A A A A\).
b. Initializes the K-bit TEXT parameter to the constant hexadecimal value 0, i.e., \(\mathrm{TEXT}_{\text {hex }}=0000000000000000\).
c. Forwards this information to the IUT using Input Type 25.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 19:
a. With the feedback path disconnected:
1) At time T 1 :
a) Assign the value of the initialization vector \(\operatorname{IV} 1_{i}\) to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(1_{1}\).

At time T2:
a) Assign the value of the initialization vector \(\operatorname{IV} 2_{\mathrm{i}}\) to the input block I2.
b) Process I2 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(2_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(\mathrm{KEY}_{2}\), resulting in intermediate value \(\mathrm{TEMP1}_{2}\).

At time T3:
a) Assign the value of the initialization vector \(\operatorname{IV} 3_{i}\) to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP3 \({ }_{1}\).
c) TEMP2 \(2_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2_{i}\), resulting in intermediate value TEMP \(2_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP1}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3 \({ }_{i}\), resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the K-bit RESULT1 \(1_{\mathrm{i}}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O}_{\mathrm{i}}\) with the K-bit TEXT.

At time T4:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O} 2_{\mathrm{i}}\).
b) Calculate the K-bit RESULT2 \(2_{\mathrm{i}}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O} 2_{\mathrm{i}}\) with the K-bit TEXT.
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(\mathrm{KEY} 2_{\mathrm{i}}\), resulting in intermediate value TEMP3 \({ }_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{3}\).
b) Calculate the K-bit RESULT3 \(_{\mathrm{i}}\) by exclusive-ORing the leftmost K bits of \(\mathrm{O} 3_{\mathrm{i}}\) with the K-bit TEXT.
b. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{\mathrm{i}}\), KEY \(2_{\mathrm{i}}\), and \(\mathrm{KEY} 3_{\mathrm{i}}\)), \(\mathrm{IV} 1_{\mathrm{i}}, \mathrm{IV} 2_{\mathrm{i}}, \mathrm{IV} 3_{\mathrm{i}}\), K-bit TEXT, K-bit RESULT \(1_{\mathrm{i}}\), K-bit RESULT \(_{2}\), and K-bit RESULT3 \({ }_{\mathrm{i}}\), to the TMOVS as specified in Output Type 7.
c. Set \(K E Y 1_{i+1}, K E Y 2_{i+1}\), and \(\mathrm{KEY}_{\mathrm{i}+1}\) equal to the corresponding \(\mathrm{KEY}_{\mathrm{i}+1}\) supplied by the TMOVS.
d. Set IV \(1_{i+1}\) equal to the corresponding DATA \(_{i+1}\) supplied by the TMOVS. Based on specifications in ANSI X9.52-1998, IV \(2_{i+1}\) is set to \(\operatorname{IV} 1_{i+1}+R_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\) and \(\mathrm{IV} 3_{\mathrm{i}+1}\) is set to \(\mathrm{IV} 1_{\mathrm{i}+1}+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=A A A A A A A A A A A A A A A A\).

NOTE -- The above processing should continue until all 19 KEY-DATA are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 7.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.10. For IUTs where K is less than 64 , the leftmost K bits of output for each RESULT value in the Table A. 10 are used.

\subsection*{5.5.2 The Monte Carlo Tests - TCFB-P Mode}

The Monte Carlo tests required to validate an IUT for the K-bit TCFB-P mode of operation are determined by the process or processes allowed by an IUT. The K-bit TCFB-P Monte Carlo Test for the Encryption Process is successfully completed if an IUT supports the encryption process of the TCFB-P mode of operation. The K-bit TCFB-P Monte Carlo Test for the Decryption Process is successfully completed if an IUT supports the decryption process.

\subsection*{5.5.2.1 The Monte Carlo Test for the Encryption Process - K-bit TCFB-P Mode}

Table 49 The Monte Carlo Test for the Encryption Process - K-bit TCFB-P Mode
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{TMOVS} & Initialize & KEY1 \({ }_{0}, \mathrm{KEY}_{2}, \mathrm{KEY}_{3}\), IV1, IV2, IV3, K-bit \(\mathrm{P}_{0}\) \\
\hline & Send & KEY1 \({ }_{0}, \mathrm{KEY}_{2}{ }_{0}, \mathrm{KEY}_{3}\), IV1, IV2, IV3, K-bit \(\mathrm{P}_{0}\) \\
\hline \multirow[t]{6}{*}{IUT:} & \multicolumn{2}{|l|}{FOR i \(=0\) TO 399} \\
\hline & \multicolumn{2}{|r|}{FOR j \(=0\) TO 9,999} \\
\hline & & \{ \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
Perform \\
Triple DES:
\end{tabular}} & \begin{tabular}{l}
\[
\text { IF }(\mathrm{j}==0,1, \text { or } 2)
\]
\[
\mathrm{Ij}=\mathrm{IV}(\mathrm{j}+1)
\] \\
ELSE
\[
\mathrm{Ij}=\mathrm{RM}^{(64-\mathrm{K})}(\mathrm{I}(\mathrm{j}-1)) \| \mathrm{K} \text {-bit } \mathrm{C}_{\mathrm{j}-3}
\] \\
Ij is read into TDEA and is encrypted by \(\mathrm{DEA}_{1}\) using \(K E Y 1_{i}\), resulting in TEMP1 \\
TEMP1 is decrypted by \(\mathrm{DEA}_{2}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in TEMP2 TEMP2 is encrypted by \(\mathrm{DEA}_{3}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in \(\mathrm{O}_{\mathrm{j}}\) K-bit \(\mathrm{C}_{\mathrm{j}}=\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O}_{\mathrm{j}}\right) \oplus\) K-bit \(\mathrm{P}_{\mathrm{j}}\)
\end{tabular} \\
\hline & & \[
\text { K-bit } \mathrm{P}_{\mathrm{j}+1}=\mathrm{LM}^{\mathrm{K}}(\mathrm{Ij})
\] \\
\hline & & cord I0, C j \\
\hline
\end{tabular}

Send i, KEY1 \({ }_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}\), I0, I1, I2, K-bit \(\mathrm{P}_{0}\), K-bit \(\mathrm{C}_{\mathrm{j}}\)
Concatenate enough C together to get (length(KEY)*3) bits (192 bits)
\(K E Y 1_{i+1}=\mathrm{KEY}_{1} \oplus\) bits \(129-192\) of C
\(\operatorname{IF}\left(\mathrm{KEY} 1_{\mathrm{i}}\right.\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\left.\mathrm{KEY} 3_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}\right)\) or \(\left(\mathrm{KEY} 1_{\mathrm{i}}\right.\), \(\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}\) are independent),
\(K E Y 2_{i+1}=\mathrm{KEY}_{\mathrm{i}} \oplus\) bits \(65-128\) of C

\section*{ELSE}
\(\mathrm{KEY}_{2}{ }_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus\) bits \(129-192\) of C
IF \(\left(\mathrm{KEY} 1_{1}=\mathrm{KEY} 2_{\mathrm{i}}=\mathrm{KEY} 3_{\mathrm{i}}\right)\) or \(\left(\mathrm{KEY} 1_{\mathrm{i}}\right.\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}\)),
\(\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus\) bits 129-192 of C
ELSE
\(\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus\) bits 1-64 of C
\(K\)-bit \(\mathrm{P}_{0}=\mathrm{LM}^{\mathrm{K}}(\mathrm{Ij})\)
\(\mathrm{I} 0=\mathrm{RM}^{(64-\mathrm{K})}(\mathrm{Ij}) \|\) K-bit \(\mathrm{C}_{\mathrm{j}}\)
\(\mathrm{I} 1=\mathrm{I} 0+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\)
\(\mathrm{I} 2=\mathrm{I} 0+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\) AAAAAAAAAAAAAAAA
\}
TMOVS: Check the IUT's output for correctness.

As summarized in Table 49, the Monte Carlo Test for the TCFB-P Encryption Process is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters \(\mathrm{KEY} 1_{0}, \mathrm{KEY}_{2}{ }_{0}\), and \(\mathrm{KEY}_{3}\), the initialization vectors IV1, IV2, and IV3, and the K-bit plaintext \(\mathrm{P}_{0}\). The IVs, and KEYs consist of 64 bits each. The P is represented as K -bits, where \(\mathrm{K}=1, \ldots, 64\). IV2 is assigned the value of \(\mathrm{IV} 1+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\). IV3 is assigned the value of IV1 \(+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\) AAAAAAAAAAAAAAAA.
b. Forwards this information to the IUT using Input Type 24.
2. The IUT should perform the following for \(\mathrm{i}=0\) through 399:
a. Record the current values of the output loop number \(\mathrm{i}, \mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}\), IV1, IV2, IV3, and \(P_{0}\).
b. Perform the following for \(\mathrm{j}=0\) through 9,999:
1) If \(j=0,1\), or 2 , assign the value of the initialization vector \(I V_{j+1}\) to the input block Ij.
2) If \(\mathrm{j}>2\), assign Ij with the value of the concatenation of the rightmost (64K) bits of \(\mathrm{I}(\mathrm{j}-1)\) with the K -bit \(\mathrm{C}_{\mathrm{j}-3}\).
3) Process \(I_{j}\) through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP1.
4) TEMP1 is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2 \(2_{\mathrm{i}}\), resulting in intermediate value TEMP2.
5) TEMP2 is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{\mathrm{j}}\).
6) Calculate the K -bit \(\mathrm{C}_{\mathrm{j}}\) by exclusive-ORing the leftmost K -bits of \(\mathrm{O}_{j}\) with the K-bit \(\mathrm{P}_{\mathrm{j}}\).
7) Prepare for loop \(j+1\) by assigning the \(K\)-bit \(P_{j+1}\) with the value of the leftmost K-bits of the Ij .
c. Record the current values of the input block I0 and \(\mathrm{C}_{\mathrm{j}}\).
d. Forward all recorded values for this loop, as specified in Output Type 8, to the TMOVS.
e. In preparation for the next output loop:
1) Concatenate enough C values together to obtain (length (KEY)*3) bits of data (192 bits).
2) Assign new values to the KEY parameters KEY1, KEY2, and KEY3. This is accomplished by exclusive-ORing C with the KEY value to obtain the new KEY. If the length of the \(C\) is less than 64 (the length of a DES key), the C should be expanded in length to \(64 * 3\) (to correspond to the combined lengths of KEY1+KEY2+KEY3) before forming the new KEY values. This expansion should be accomplished by concatenating X of the most current Cs together to obtain 192 bits of C. For example, if the length
of the C is 50 bits (\(K=50\)), the expanded \(\mathrm{C}=\left(\mathrm{C}^{9}{ }_{9996}, \ldots, \mathrm{C}^{50}{ }_{9996}, \mathrm{C}^{1}{ }_{9997}, \ldots\right.\), \(\mathrm{C}^{50}{ }_{9997}, \mathrm{C}^{1}{ }_{9998}, \ldots, \mathrm{C}^{50}{ }_{9998}, \mathrm{C}^{1}{ }_{9999}, \ldots, \mathrm{C}^{50}{ }_{9999}\)).

Bits 129-192 of the expanded C will be exclusive-ORed with KEY1 to form the new KEY1.

The calculation of the new KEY2 and KEY3 are based on the values of the keys. . If \(\mathrm{KEY} 1_{\mathrm{i}}\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\mathrm{KEY} 3_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}\), or KEY1, KEY2 and KEY3 are independent, the new KEY2 should be calculated by exclusive-ORing the current KEY2 with bits 65-128 of the expanded C. If KEY1=KEY2=KEY3, the current KEY2 will be exclusiveORed with bits 129-192 of the expanded C to calculate the new KEY2.

If KEY1, KEY2, and KEY3 are independent, the new KEY3 should be calculated by exclusive-ORing the current KEY3 with bits 1-64 of the expanded C. Otherwise, the current KEY3 will be exclusive-ORed with bits 129-192 of the expanded C to calculate the new KEY3.
3) Assign a new value to the K -bit \(\mathrm{P}_{0}\). The K -bit \(\mathrm{P}_{0}\) should be assigned the value of the leftmost \(K\)-bits of the current \(I_{j}\), where \(j=9999\), i.e., \(\left(P^{1}{ }_{0}\right.\), \(\left.\mathrm{P}^{2}{ }_{0}, \ldots, \mathrm{P}^{\mathrm{K}}{ }_{0}\right)=\left(\mathrm{I}_{\mathrm{j}}{ }_{\mathrm{j}}, \mathrm{I}_{\mathrm{j}}{ }^{2}, \ldots, \mathrm{I}^{\mathrm{K}}{ }_{\mathrm{j}}\right)\).
4) Assign a new value to the I parameters. \(\mathrm{I}_{0}\) should be assigned the value of the concatenation of the rightmost \((64-\mathrm{K})\) bits of \(\mathrm{I}_{\mathrm{j}}\) with the K -bit \(\mathrm{C}_{\mathrm{j}}\), i.e. \(\left(I^{1}, I^{2}{ }_{0}, \ldots, I^{64}{ }_{0}\right)=\left(I^{[K+1]}{ }_{\mathrm{j}}, \mathrm{I}^{[\mathrm{K}+2]}{ }_{\mathrm{j}}, \ldots, \mathrm{I}^{64}{ }_{\mathrm{j}}, \mathrm{C}^{1}{ }_{\mathrm{j}}, \mathrm{C}^{2}{ }_{\mathrm{j}}, \ldots, \mathrm{C}^{\mathrm{K}}{ }_{\mathrm{j}}\right) . \mathrm{I}_{1}\) should be assigned the value of \(\mathrm{I}_{0}+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\). \(\mathrm{I}_{2}\) should be assigned the value of \(\mathrm{I}_{0}+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\) AAAAAAAAAAAAAAAA. Note \(\mathrm{j}=9999\).

NOTE -- the new P and I should be denoted as \(\mathrm{P}_{0}\) and \(\mathrm{I}_{0}\) because these values are used for the first pass through the inner loop when \(\mathrm{j}=0\).

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 8.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

\subsection*{5.5.2.2 The Monte Carlo Test for the Decryption Process - K-bit TCFB-P Mode}

Table 50 The Monte Carlo Test for the Decryption Process - K-bit TCFB-P Mode
\begin{tabular}{|lll}
\hline TMOVS: & Initialize & \(\mathrm{KEY1}_{0}, \mathrm{KEY}_{0}, \mathrm{KEY}_{0}\), IV1, IV2, IV3, K-bit C \({ }_{0}\) \\
& Send & \(\mathrm{KEY1}_{0}, \mathrm{KEY}_{0}, \mathrm{KEY}_{0}\), IV1, IV2, IV3, K-bit C \({ }_{0}\) \\
IUT: & FOR i = 0 TO 399 &
\end{tabular}

FOR j = 0 TO 9,999
\{

Perform Triple DES:
\[
\begin{array}{r}
\text { IF }(\mathrm{j}==0,1, \text { or } 2) \\
\mathrm{Ij}=\mathrm{IV}(\mathrm{j}+1)
\end{array}
\]

\section*{ELSE}
\[
\mathrm{Ij}=\mathrm{RM}^{(64-\mathrm{K})}(\mathrm{I}(\mathrm{j}-1)) \| \mathrm{K}-\text { bit } \mathrm{C}_{\mathrm{j}-3}
\]

Ij is read into TDEA and is encrypted by \(\mathrm{DEA}_{1}\) using \(\mathrm{KEY}_{1}{ }_{\mathrm{i}}\), resulting in TEMP1

TEMP1 is decrypted by \(\mathrm{DEA}_{2}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in TEMP2
TEMP2 is encrypted by \(\mathrm{DEA}_{3}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in \(\mathrm{O}_{\mathrm{j}}\)
K-bit \(\mathrm{P}_{\mathrm{j}}=\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O}_{\mathrm{j}}\right) \oplus\) K-bit \(\mathrm{C}_{\mathrm{j}}\)
K-bit \(\mathrm{C}_{\mathrm{j}+1}=\mathrm{LM}^{\mathrm{K}}\left(\mathrm{O}_{\mathrm{j}}\right)\)
\}
Record I0, K-bit \(\mathrm{P}_{\mathrm{j}}\)
Send i, KEY \(1_{i}\), KEY \(_{\mathrm{i}}\), KEY \(3_{\mathrm{i}}\), I0, I1, I2, K-bit \(\mathrm{C}_{0}\), K-bit \(\mathrm{P}_{\mathrm{j}}\)
Concatenate enough Ps together to get (length(KEY)*3) bits (192 bits)
\(K E Y 1_{i+1}=\mathrm{KEY}_{\mathrm{i}} \oplus\) bits \(129-192\) of P
\(\operatorname{IF}\left(\mathrm{KEY}_{1}\right.\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\left.\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}\right)\) or \(\left(\mathrm{KEY} 1_{\mathrm{i}}\right.\), \(\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}\) are independent),
\(\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus\) bits \(65-128\) of P
ELSE
\(K E Y 2_{i+1}=K E Y 2_{i} \oplus\) bits \(129-192\) of P
\(\operatorname{IF}\left(\mathrm{KEY} 1_{\mathrm{i}}=\mathrm{KEY} 2_{\mathrm{i}}=\mathrm{KEY} 3_{\mathrm{i}}\right)\) or \(\left(\mathrm{KEY} 1_{\mathrm{i}}\right.\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}\)),
\[
\left.\begin{array}{c}
\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \text { bits } 129-192 \text { of } \mathrm{P} \\
\mathrm{ELSE} \\
\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \text { bits } 1-64 \text { of } \mathrm{P} \\
\mathrm{I} 0=\mathrm{RM}^{(64-\mathrm{K})}(\mathrm{Ij}) \| \mathrm{K}-\text { bit } \mathrm{C}_{\mathrm{j}} \\
\mathrm{I} 1=\mathrm{I} 0+\mathrm{R}_{1} \bmod 2^{64} \text { where } \mathrm{R}_{1}=5555555555555555 \\
\mathrm{I} 2=\mathrm{I} 0+\mathrm{R}_{2} \bmod 2^{64} \text { where } \mathrm{R}_{2}=\mathrm{AAAAAAAAAAAAAAAA} \\
\mathrm{~K}-\mathrm{bit} \mathrm{C}_{0}=\mathrm{LM}^{\mathrm{K}}(\mathrm{Oj})
\end{array}\right\} \begin{aligned}
& \} \quad \text { Check the IUT's output for correctness. }
\end{aligned}
\]

As summarized in Table 50, the Monte Carlo Test for the TCFB-P Decryption Process is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters \(\mathrm{KEY} 1_{0}, \mathrm{KEY}_{0}{ }_{0}\), and \(\mathrm{KEY}_{3}\), the initialization vectors IV1, IV2, and IV3, and the K-bit \(\mathrm{C}_{0}\). The IVs, and KEYs consist of 64 bits each. The C is represented as K -bits, where \(\mathrm{K}=1, \ldots, 64\). IV2 is assigned the value of IV1 \(+\mathrm{R}_{1}\) mod \(2^{64}\) where \(\mathrm{R}_{1}=555555555555555\). IV3 is assigned the value of \(\mathrm{IV} 1+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\) AAAAAAAAAAAAAAAA.
b. Forwards this information to the IUT using Input Type 24.
2. The IUT should perform the following for \(\mathrm{i}=0\) through 399:
a. Record the current values of the output loop number \(\mathrm{i}, \mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}, \mathrm{KEY} \mathrm{K}_{\mathrm{i}}\), IV1, IV2, IV3, and C \(\mathrm{C}_{0}\).
b. Perform the following for \(\mathrm{j}=0\) through 9,999:
1) If \(j=0,1\), or 2 , assign the value of the initialization vector \(I V_{j+1}\) to the input block Ij.
2) If \(\mathrm{j}>2\), assign Ij with the value of the concatenation of the rightmost (64K) bits of \(\mathrm{I}(\mathrm{j}-1)\) with the K -bit \(\mathrm{C}_{\mathrm{j}-3}\).
3) Process \(I_{j}\) through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP1.
4) TEMP1 is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY \(2_{i}\), resulting in intermediate value TEMP2.
5) TEMP2 is fed into the DEA stage DEA \(_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{\mathrm{j}}\).
6) Calculate the K-bit \(P_{j}\) by exclusive-ORing the leftmost \(K\)-bits of \(O_{j}\) with the K-bit \(\mathrm{C}_{\mathrm{j}}\).
7) Prepare for loop \(\mathrm{j}+1\) by assigning the K -bit \(\mathrm{C}_{\mathrm{j}+1}\) with the value of the leftmost \(K\)-bits of the \(\mathrm{O}_{\mathrm{j}}\).
c. Record the current values of the input block I0 and K-bit \(\mathrm{P}_{\mathrm{j}}\).
d. Forward all recorded values for this loop, as specified in Output Type 8, to the TMOVS.
e. In preparation for the next output loop:
1) Concatenate enough \(P\) values together to obtain (length (KEY)*3) bits of data (192 bits).
3) Assign new values to the KEY parameters KEY1, KEY2, and KEY3. This is accomplished by exclusive-ORing P with the KEY value to obtain the new KEY. If the length of the \(P\) is less than 64 (the length of a DES key), the P should be expanded in length to \(64 * 3\) (to correspond to the combined lengths of KEY1+KEY2+KEY3) before forming the new KEY values. This expansion should be accomplished by concatenating \(X\) of the most current Ps together to obtain 192 bits of P . For example, if the length of the P is 50 bits \((K=50)\), the expanded \(\mathrm{P}=\left(\mathrm{P}^{9}{ }_{9996}, \ldots, \mathrm{P}^{50}{ }_{9996}, \mathrm{P}^{1}{ }_{9997}, \ldots, \mathrm{P}^{50}{ }_{9997}\right.\), \(\mathrm{P}^{1}{ }_{9998}, \ldots, \mathrm{P}^{50}{ }_{9998}, \mathrm{P}^{1}{ }_{9999}, \ldots, \mathrm{P}^{50}{ }_{9999}\)).

Bits 129-192 of the expanded P will be exclusive-ORed with KEY1 to form the new KEY1.

The calculation of the new KEY2 and KEY3 are based on the values of the keys. . If \(\mathrm{KEY} 1_{\mathrm{i}}\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\mathrm{KEY} 3_{i}=\mathrm{KEY} 1_{i}\), or KEY1, KEY2 and KEY3 are independent, the new KEY2 should be calculated by exclusive-ORing the current KEY2 with bits 65-128 of the expanded P. If KEY1=KEY2=KEY3, the current KEY2 will be exclusiveORed with bits 129-192 of the expanded P to calculate the new KEY2.

If KEY1, KEY2, and KEY3 are independent, the new KEY3 should be calculated by exclusive-ORing the current KEY3 with bits 1-64 of the expanded P. Otherwise, the current KEY3 will be exclusive-ORed with bits 129-192 of the expanded P to calculate the new KEY3.
3) Assign a new value to the I parameters. \(\mathrm{I}_{0}\) should be assigned the value of the concatenation of the rightmost \((64-K)\) bits of \(\mathrm{I}_{\mathrm{j}}\) with the K -bit \(\mathrm{C}_{\mathrm{j}}\), i.e. \(\left(\mathrm{I}^{1}{ }_{0}, \mathrm{I}^{2}{ }_{0}, \ldots, \mathrm{I}^{64}{ }_{0}\right)=\left(\mathrm{I}^{[\mathrm{K}+1]}{ }_{\mathrm{j}}, \mathrm{I}^{[\mathrm{K}+2]}{ }_{\mathrm{j}}, \ldots, \mathrm{I}^{64}{ }_{\mathrm{j}}, \mathrm{C}_{\mathrm{j}}^{1}, \mathrm{C}^{2}{ }_{\mathrm{j}}, \ldots, \mathrm{C}^{\mathrm{K}}{ }_{\mathrm{j}}\right)\). \(\mathrm{I}_{1}\) should be assigned the value of \(\mathrm{I}_{0}+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\). \(\mathrm{I}_{2}\) should be assigned the value of \(\mathrm{I}_{0}+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\) AAAAAAAAAAAAAAAA. Note \(\mathrm{j}=9999\).
4) Assign a new value to the K -bit \(\mathrm{C}_{0}\). The K -bit \(\mathrm{C}_{0}\) should be assigned the value of the leftmost \(K\)-bits of the current \(\mathrm{O}_{\mathrm{j}}\), where \(\mathrm{j}=9999\), i.e., (\(\mathrm{C}^{1}{ }_{0}\), \(\left.\mathrm{C}_{0}^{2}, \ldots, \mathrm{C}_{0}^{\mathrm{K}}\right)=\left(\mathrm{O}_{\mathrm{j}}^{1}, \mathrm{O}_{\mathrm{j}}^{2}, \ldots, \mathrm{O}^{\mathrm{K}}{ }_{\mathrm{j}}\right)\).

NOTE -- the new \(C\) and \(I\) should be denoted as \(C_{0}\) and \(I_{0}\) because these values are used for the first pass through the inner loop when \(\mathrm{j}=0\).

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 8.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

\subsection*{5.6 The Output Feedback Mode - TOFB Mode}

The IUTs which implement the Output Feedback (TOFB) mode of operation are validated by successfully completing a set of Known Answer tests and a Monte Carlo test applicable to both IUTs supporting encryption and/or decryption. Encryption and decryption using the TOFB mode of operation involve processing an input block through the encryption process of the specified algorithm. Therefore, the same set of Known Answer tests and Monte Carlo test can be applied to IUTs supporting both encryption and decryption.

The process of validating an IUT which supports the encryption and/or decryption processes of the TOFB mode of operation involves the successful completion of the following six tests:
1. The Variable Text Known Answer Test - TOFB mode

2 The Inverse Permutation Known Answer Test - TOFB mode
3. The Variable Key Known Answer Test - TOFB mode
4. The Permutation Operation Known Answer Test - TOFB mode
5. The Substitution Table Known Answer Test - TOFB mode
6. The Monte Carlo Test - TOFB mode

An explanation of the tests for the TOFB mode follows.

\subsection*{5.6.1 The Known Answer Tests - TOFB Mode}

In the following description of the Known Answer tests, TEXT refers to plaintext, and RESULT refers to ciphertext if the IUT performs TOFB encryption. If the IUT supports TOFB decryption, TEXT refers to ciphertext, and RESULT refers to plaintext.

\subsection*{5.6.1.1 The Variable TEXT Known Answer Test - TOFB Mode}

Table 51 The Variable TEXT Known Answer Test - TOFB Mode
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{TMOVS:} & Initialize & \[
\begin{gathered}
\text { KEYs: KEY1 }=\text { KEY2 }=\text { KEY3 }=0101010101010101 \text { (odd parity } \\
\text { set })
\end{gathered}
\] \\
\hline & & \(\mathrm{IV}_{1}=8000000000000000\) \\
\hline & & TEXT \(=0000000000000000\) \\
\hline & Send & KEY (representing KEY1, KEY2, and KEY3), \(\mathrm{IV}_{1}\), TEXT \\
\hline \multirow[t]{9}{*}{IUT:} & \multicolumn{2}{|l|}{FOR i \(=1\) to 64} \\
\hline & \multirow{7}{*}{\begin{tabular}{l}
Perform \\
Triple DES:
\end{tabular}} & \(\mathrm{I}_{\mathrm{i}}=\mathrm{IV}_{\mathrm{i}}\) \\
\hline & & \(\mathrm{I}_{\mathrm{i}}\) is read into TDEA and is encrypted by \(\mathrm{DEA}_{1}\) using KEY1, resulting in TEMP1 \\
\hline & & TEMP1 is decrypted by \(\mathrm{DEA}_{2}\) using KEY2, resulting in TEMP2 \\
\hline & & TEMP2 is encrypted by \(\mathrm{DEA}_{3}\) using KEY3, resulting in \(\mathrm{O}_{\mathrm{i}}\) \\
\hline & & RESULT \(_{\mathrm{i}}=\mathrm{O}_{\mathrm{i}} \oplus\) TEXT \\
\hline & & Send i, KEY (representing KEY1, KEY2, and KEY3), IV \({ }_{\mathrm{i}}\), TEXT, RESULT \(_{\mathrm{i}}\) \\
\hline & & \(\mathrm{IV}_{\mathrm{i}+1}=\) basis vector where single "1" bit is in position \(\mathrm{i}+1\) \\
\hline & \} & \\
\hline TMOVS: & Compare res & Its from each loop with known answers. Use Table A.1. \\
\hline
\end{tabular}

As summarized in Table 51, the Variable TEXT Known Answer Test for the TOFB mode of operation is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., \(K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101\) 010101010101 .
b. Initializes the 64-bit initialization vector \(\mathrm{IV}_{1}\) to the basis vector containing a"1" in the first bit position and " 0 " in the following 63 positions, i.e., \(\mathrm{IV}_{1 \text { bin }}=10000000\) 00 . The equivalent of this value in hexadecimal notation is 8000000000000000 .
c. Initializes the TEXT parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{TEXT}_{\text {hex }}\) \(=0000000000000000\).
d. Forwards this information to the IUT using Input Type 2.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 64 :
a. Assign the value of the initialization vector \(\mathrm{IV}_{\mathrm{i}}\) to the input block \(\mathrm{I}_{\mathrm{i}}\).
b. Process \(I_{i}\) through the three DEA stages, resulting in a 64-bit output block \(\mathrm{O}_{\mathrm{i}}\). This involves processing \(\mathrm{I}_{\mathrm{i}}\) through the first DEA stage, denoted \(\mathrm{DEA}_{1}\), in the encrypt state using KEY1, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted \(\mathrm{DEA}_{2}\), in the decrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted \(\mathrm{DEA}_{3}\), in the encrypt state using KEY3, resulting in output block \(\mathrm{O}_{\mathrm{i}}\).
c. Calculate the K-bit \(\operatorname{RESULT}_{\mathrm{i}}\) by exclusive-ORing the leftmost K-bits of \(\mathrm{O}_{\mathrm{i}}\) with the K-bit TEXT.
d. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), \(\mathrm{IV}_{\mathrm{i}}\), TEXT, and the RESULT \(\mathrm{T}_{\mathrm{i}}\) to the TMOVS as specified in Output Type 2.
e. Retain the RESULT values for use with the Inverse Permutation Known Answer Test for the TOFB Mode (Section 5.6.1.2).
f. Assign a new value to \(\mathrm{IV}_{\mathrm{i}+1}\) by setting it equal to the value of a basis vector with a " 1 " bit in position \(i+1\), where \(i+1=2, \ldots, 64\).

NOTE -- This continues until every possible basis vector has been represented by the IV, i.e., 64 times. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.1.

\subsection*{5.6.1.2 The Inverse Permutation Known Answer Test - TOFB Mode}

Table 52 The Inverse Permutation Known Answer Test - TOFB Mode

As summarized in Table 52 the Inverse Permutation Known Answer Test for the TOFB mode of operation is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., \(K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101\) 010101010101 .
b. Initializes the 64-bit initialization vector \(\mathrm{IV}_{1}\) to the basis vector containing a"1" in the first bit position and " 0 " in the following 63 positions, i.e., \(\mathrm{IV}_{1 \text { bin }}=10000000\) 00 . The equivalent of this value in hexadecimal notation is 8000000000000000 .
c. Initializes the \(\operatorname{TEXT}_{\mathrm{i}}\) (where \(\mathrm{i}=1, \ldots, 64\)) to the \(\operatorname{RESULT}_{\mathrm{i}}\) values obtained from the Variable TEXT Known Answer Test.
d. Forwards this information to the IUT using Input Type 5.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 64 :
a. Assign the value of the initialization vector \(\mathrm{IV}_{\mathrm{i}}\) to the input block \(\mathrm{I}_{\mathrm{i}}\).
b. Process \(I_{i}\) through the three DEA stages resulting in a 64-bit output block \(\mathrm{O}_{\mathrm{i}}\). This involves processing \(\mathrm{I}_{\mathrm{i}}\) through the first DEA stage, denoted \(\mathrm{DEA}_{1}\), in the encrypt state using KEY1, resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted \(\mathrm{DEA}_{2}\), in the decrypt state using KEY2, resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted \(\mathrm{DEA}_{3}\), in the encrypt state using KEY3, resulting in output block \(\mathrm{O}_{\mathrm{i}}\).
c. Calculate the RESULT \({ }_{i}\) by exclusive-ORing the \(\mathrm{O}_{\mathrm{i}}\) with the \(\mathrm{TEXT}_{\mathrm{i}}\).
d. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), \(\mathrm{IV}_{\mathrm{i}}\), TEXT \(_{\mathrm{i}}\), and the RESULT \(\mathrm{T}_{\mathrm{i}}\) to the TMOVS as specified in Output Type 2.
e. Assign a new value to \(\mathrm{IV}_{\mathrm{i}+1}\) by setting it equal to the value of a basis vector with a " 1 " bit in position \(\mathrm{i}+1\), where \(\mathrm{i}+1=2, \ldots, 64\).
f. Assign a new value to \(\mathrm{TEXT}_{\mathrm{i}+1}\) by setting it equal to the corresponding output from the TMOVS.

NOTE -- This processing continues until all RESULT values from the Variable TEXT Known Answer Test have been used as input. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values. The RESULT values should be all zeros.

\subsection*{5.6.1.3 The Variable KEY Known Answer Test - TOFB Mode}

Table 53 The Variable Key Known Answer Test - TOFB Mode

As summarized in Table 53, the Variable Key Known Answer Test for the TOFB mode is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters \(\mathrm{KEY}_{1}, \mathrm{KEY}_{1}\), and \(\mathrm{KEY}_{1}\) to contain " 0 " in every significant bit except for a " 1 " in the first position, i.e., the 64 -bit \(K E Y 1_{1 \text { bin }}=\) \(K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001\) 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to " 0 " or " 1 " to get odd parity.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{IV}_{\text {hex }}=\) 0000000000000000 .
c. Initializes the TEXT to the constant hexadecimal value 0, i.e., \(\mathrm{TEXT}_{\text {hex }}=000000\) 0000000000 .
d. Forwards this information to the IUT using Input Type 2.
2. The IUT should perform the following for \(\mathrm{i}=1\) to 56 :

NOTE -- 56 is the number of significant bits in a TDES key.
a. Assign the value of the initialization vector IV to the input block \(\mathrm{I}_{\mathrm{i}}\).
b. Process \(\mathrm{I}_{\mathrm{i}}\) through the three DEA stages resulting in a 64 -bit output block \(\mathrm{O}_{\mathrm{i}}\). This involves processing \(\mathrm{I}_{\mathrm{i}}\) through the first DEA stage, denoted \(\mathrm{DEA}_{1}\), in the encrypt state using KEY1 \(1_{\mathrm{i}}\), resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted \(\mathrm{DEA}_{2}\), in the decrypt state using \(\mathrm{KEY} 2_{\mathrm{i}}\), resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted \(\mathrm{DEA}_{3}\), in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{\mathrm{i}}\).
c. Calculate the RESULT \({ }_{i}\) by exclusive-ORing the \(\mathrm{O}_{\mathrm{i}}\) with the TEXT.
d. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{1}\), KEY \(2_{i}\), and \(\mathrm{KEY}_{\mathrm{i}}\)), IV, TEXT, and the resulting RESULT \(_{i}\) to the TMOVS as specified in Output Type 2.
e. Set \(\mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}\) equal to the vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position \(\mathrm{i}+1\). The parity bits contain " 1 " or " 0 " to make odd parity.

NOTE -- This processing should continue until every significant basis vector has been represented by the KEY parameters. The output from the IUT should consist of 56 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.2.

\subsection*{5.6.1.4 The Permutation Operation Known Answer Test - TOFB Mode}

Table 54 The Permutation Operation Known Answer Test - TOFB Mode

As summarized in Table 54, the Permutation Operation Known Answer Test for the TOFB mode of operation is performed as follows:
1. The TMOVS:
a. Initializes the \(\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\) variables with the 32 constant KEY values from Table A.3.
b. Initializes the 64-bit IV parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{IV}_{\text {hex }}=\) 0000000000000000 .
c. Initializes the TEXT to the constant hexadecimal value 0 , i.e., \(\mathrm{TEXT}_{\text {hex }}=000000\) 0000000000 .
d. Forwards this information to the IUT using Input Type 8.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 32 :
a. Assign the value of the initialization vector IV to the input block \(\mathrm{I}_{\mathrm{i}}\).
b. Process \(\mathrm{I}_{\mathrm{i}}\) through the three DEA stages resulting in a 64 -bit output block \(\mathrm{O}_{\mathrm{i}}\). This involves processing \(I_{i}\) through the first DEA stage, denoted \(\mathrm{DEA}_{1}\), in the encrypt state using \(\mathrm{KEY}_{1}\), resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted \(\mathrm{DEA}_{2}\), in the decrypt state using KEY2 \({ }_{\mathrm{i}}\), resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted \(\mathrm{DEA}_{3}\), in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{\mathrm{i}}\).
c. Calculate the RESULT \({ }_{i}\) by exclusive-ORing the \(\mathrm{O}_{\mathrm{i}}\) with the TEXT.
d. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{\mathrm{i}}\), KEY \({ }_{i}\), and KEY3 \(_{i}\)), IV, TEXT, and the RESULT \(_{i}\) to the TMOVS as specified in Output Type 2.
e. Set \(\mathrm{KEY}_{1+1}, \mathrm{KEY} 2_{\mathrm{i}+1}\), and \(\mathrm{KEY} 3_{\mathrm{i}+1}\) equal to the corresponding \(\mathrm{KEY}_{\mathrm{i}+1}\) supplied by the TMOVS.

NOTE --The above processing should continue until all 32 KEY values are processed. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.3.

\subsection*{5.6.1.5 The Substitution Table Known Answer Test - TOFB Mode}

Table 55 The Substitution Table Known Answer Test - TOFB Mode

As summarized in Table 55, the Substitution Table Known Answer Test for the TOFB mode of operation is performed as follows:
1. The TMOVS:
a. Initializes the KEY-IV pairs with the 19 constant KEY-DATA values from Table A.4. The DATA values are assigned to the values of the initialization vectors IVs. The KEY value indicates the value of KEY1, KEY2 and KEY3, i.e., KEY1=KEY2=KEY3.
b. Initializes the TEXT parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{TEXT}_{\text {hex }}\) \(=0000000000000000\).
c. Forwards this information to the IUT using Input Type 11.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 19:
a. Assign the value of the initialization vector \(\mathrm{IV}_{\mathrm{i}}\) to the input block \(\mathrm{I}_{\mathrm{i}}\).
b. Process \(I_{i}\) through the three DEA stages, resulting in an output block \(\mathrm{O}_{\mathrm{i}}\). This involves processing \(\mathrm{I}_{\mathrm{i}}\) through the first DEA stage, denoted \(\mathrm{DEA}_{1}\), in the encrypt state using KEY1 \(1_{\mathrm{i}}\), resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted \(\mathrm{DEA}_{2}\), in the decrypt state using \(\mathrm{KEY} 2_{\mathrm{i}}\), resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted \(\mathrm{DEA}_{3}\), in the encrypt state using \(\mathrm{KEY}_{3}\), resulting in output block \(\mathrm{O}_{\mathrm{i}}\).
c. Calculate the RESULT \(_{\mathrm{i}}\) by exclusive-ORing the \(\mathrm{O}_{\mathrm{i}}\) with the TEXT.
d. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{\mathrm{i}}\), \(\mathrm{KEY}_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\)), \(\mathrm{IV}_{\mathrm{i}}\), TEXT, and the RESULT \(_{\mathrm{i}}\) to the TMOVS as specified in Output Type 2.
e. Set \(\mathrm{KEY}_{\mathrm{i}+1}, \mathrm{KEY}_{\mathrm{i}+1}\), and \(\mathrm{KEY}_{\mathrm{i}+1}\) equal to the corresponding \(\mathrm{KEY}_{\mathrm{i}+1}\) value supplied by the TMOVS.
f. Set \(\mathrm{IV}_{i+1}\) equal to the corresponding \(\mathrm{DATA}_{i+1}\) value supplied by the TMOVS.

NOTE -- The above processing should continue until all 19 KEY-DATA pairs are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 2.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.4.

\subsection*{5.6.2 The Monte Carlo Test - TOFB Mode}

The TOFB mode has one Monte Carlo test that is used regardless of process, i.e., the same Monte Carlo test is used for IUTs supporting the encryption and/or decryption processes.

Table 56 The Monte Carlo Test - TOFB Mode


```

    KEY1 1+1 = KEY1 }\mp@subsup{1}{\textrm{i}}{}\oplus\mp@subsup{\textrm{RESULT}}{\textrm{j}}{
    ```

```

        (KEY1 i, KEY2 }\mp@subsup{}{\textrm{i}}{2}\mathrm{ , and KEY3 3
    ```

```

    ELSE
        KEY2 }\mp@subsup{\textrm{i}}{1+1}{}=\mp@subsup{\textrm{KEY}}{\textrm{i}}{}\oplus\otimes\mp@subsup{\mathrm{ RESULT }}{\textrm{j}}{
    ```

```

        and KEY3 }\mp@subsup{}{\textrm{i}}{=}=\mp@subsup{\textrm{KEY1}}{\textrm{i}}{(}
        KEY3 i+1 }=\mp@subsup{\textrm{KEY}}{\textrm{i}}{}\oplus\mp@subsup{\textrm{RESULT}}{\textrm{j}}{
        ELSE
        KEY3 i+1 = KEY3 }\mp@subsup{}{\textrm{i}}{}\oplus\mp@subsup{\textrm{RESULT}}{\textrm{j}-2}{
        TEXT 
        I}=\mp@subsup{O}{\textrm{j}}{
        }
    TMOVS: Check IUT's output for correctness.

```

As summarized in Table 56, the Monte Carlo Test for the TOFB mode of operation is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters \(\mathrm{KEY}_{1}, \mathrm{KEY}_{0}{ }_{0}\), and \(\mathrm{KEY}_{3}\), the initialization vector IV, and the \(\mathrm{TEXT}_{0}\) variables. All variables consist of 64 bits each.
b. Forwards this information to the IUT using Input Type 21.
2. The IUT should perform the following for \(\mathrm{i}=0\) through 399:
a. If \(i=0\) (if this is the first time through this loop), assign the value of the initialization vector IV to the input block \(\mathrm{I}_{0}\).
b. Record the current values of the output loop number \(\mathrm{i}, \mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}\), and the \(\mathrm{TEXT}_{0}\).
c. Assign the value of \(\mathrm{TEXT}_{0}\) to INITTEXT. This will contain the initial value of the text from every \(\mathrm{j}=0\) loop.
d. Perform the following for \(\mathrm{j}=0\) through 9999:
1) Using the corresponding \(K E Y 1_{i}, \mathrm{KEY} 2_{i}\), and \(\mathrm{KEY}_{i}\) values, process \(\mathrm{I}_{\mathrm{j}}\) through the three DEA stages resulting in output block \(\mathrm{O}_{\mathrm{j}}\). This involves processing \(\mathrm{I}_{\mathrm{j}}\) through the first DEA stage, denoted \(\mathrm{DEA}_{1}\), in the encrypt state using \(\mathrm{KEY}_{1}\), resulting in intermediate value TEMP1. TEMP1 is fed directly into the second DEA stage, denoted \(\mathrm{DEA}_{2}\), in the decrypt state using KEY2 \({ }_{\mathrm{i}}\), resulting in intermediate value TEMP2. TEMP2 is fed directly into the third DEA stage, denoted \(\mathrm{DEA}_{3}\), in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{\mathrm{j}}\).
2) Calculate the RESULT \(\mathrm{T}_{\mathrm{j}}\) by exclusive-ORing the \(\mathrm{O}_{\mathrm{j}}\) with the \(\mathrm{TEXT}_{\mathrm{j}}\).
3) Prepare for loop \(\mathrm{j}+1\) by doing the following:
a) Assign the \(\mathrm{TEXT}_{\mathrm{j}+1}\) with the value of the \(\mathrm{I}_{\mathrm{j}}\).
b) Assign \(\mathrm{I}_{\mathrm{j}+1}\) with the value of the \(\mathrm{O}_{\mathrm{j}}\).
e. Record the RESULT \(\mathrm{T}_{\mathrm{j}}\) and the \(\mathrm{I}_{0}\).
f. Forward all recorded information for this loop, as specified in Output Type 6, to the TMOVS.
g. In preparation for the next output loop (note \(\mathrm{j}=9999\)):
1) Assign new values to the KEY parameters, KEY1, KEY2, and KEY3 in preparation for the next outer loop.

The new \(\mathrm{KEY}_{\mathrm{i}+1}\) should be calculated by exclusive-ORing the current \(K E Y 1_{i}\) with the RESULT \({ }_{j}\).

The new \(\mathrm{KEY}_{\mathrm{i}+1}\) calculation is based on the values of the keys. If \(\mathrm{KEY} 1_{\mathrm{i}}\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\mathrm{KEY} 3_{i}=\mathrm{KEY} 1_{\mathrm{i}}\), or \(\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\) are independent, the new \(\mathrm{KEY} 2_{\mathrm{i}+1}\) should be calculated by exclusive-ORing the current \(\mathrm{KEY}_{\mathrm{i}}\) with the RESULT \(_{\mathrm{j}-1}\). If \(K E Y 1_{i}=\mathrm{KEY}_{2}=\mathrm{KEY}_{\mathrm{i}}\), the new \(\mathrm{KEY} 2_{\mathrm{i}+1}\) should be calculated by exclusive-ORing the current \(\mathrm{KEY}_{\mathrm{i}}\) with the RESULT \(_{j}\).

The new \(\mathrm{KEY}_{\mathrm{i}+1}\) calculation is also based on the values of the keys. If \(K E Y 1_{i}, K E Y 2_{i}\), and \(K E Y 3_{i}\) are independent, the new \(K E Y 3_{i+1}\) should be
calculated by exclusive-ORing the current \(\mathrm{KEY}_{\mathrm{i}}\) with the RESULT \(_{\mathrm{j}-2}\). If \(\mathrm{KEY}_{1}{ }_{\mathrm{i}}\) and \(\mathrm{KEY} 2_{\mathrm{i}}\) are independent and \(\mathrm{KEY} 3_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}\), or if \(K E Y 1_{i}=\mathrm{KEY}_{2}=\mathrm{KEY}_{\mathrm{i}}\), the new \(\mathrm{KEY}_{\mathrm{i}+1}\) should be calculated by exclusive-ORing the current \(\mathrm{KEY}_{\mathrm{i}}\) with the \(\mathrm{RESULT}_{j}\).
2) Assign a new value to the \(\mathrm{TEXT}_{0}\). The \(\mathrm{TEXT}_{0}\) should be assigned the value of INITTEXT exclusive-ORed with \(\mathrm{I}_{\mathrm{j}}\).
3) Assign a new value to \(I_{0} . I_{0}\) should be assigned the value of the \(O_{j}\).

NOTE -- the new TEXT and I should be denoted as TEXT \(_{0}\) and \(\mathrm{I}_{0}\) because these values are used for the first pass through the inner loop when \(\mathrm{j}=0\).

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 6.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values.

\subsection*{5.7 The Output Feedback Interleaved (OFB-I) Mode}

The IUTs which implement the Output Feedback Interleaved (OFB-I) mode are validated by successfully completing a set of Known Answer tests and a Monte Carlo test applicable to both IUTs supporting encryption and/or decryption. Encryption and decryption using the TOFB-I mode of operation involve initializing the three individual DEA stages and then simultaneously clocking them. This improves the throughput and minimizes the propagation delay. Each clock cycle involves the data being processed by each \(\mathrm{DEA}_{i}\) stage and passing it onward to the output buffer or the next stage so that idle \(\mathrm{DEA}_{i}\) stages are minimized. The pipelined configuration is intended for systems equipped with multiple DEA processors. The same set of Known Answer tests and Monte Carlo test can be applied to IUTs supporting both encryption and decryption because the same sequence of encrypt with KEY1, decrypt with KEY2 and encrypt with KEY3 is used for both encryption and decryption.

The processing for each Known Answer test and Monte Carlo test is broken down into clock cycles T1, T2, T3,.... Within each clock cycle, the processing occurring on each active DEA is discussed. For convenience, let KEY1 represent the key used on processor DEA \({ }_{1}\), KEY2 represent the key used on processor \(\mathrm{DEA}_{2}\), and KEY3 represent the key used on processor \(\mathrm{DEA}_{3}\).

The process of validating an IUT which supports the TOFB-I mode of operation in the encryption and/or the decryption processes involves the successful completion of the following six tests:
1. The Variable Text Known Answer Test - TOFB-I mode
2. The Inverse Permutation Known Answer Test - TOFB-I mode
3. The Variable Key Known Answer Test - TOFB-I mode
4. The Permutation Operation Known Answer Test - TOFB-I mode
5. The Substitution Table Known Answer Test - TOFB-I mode
6. The Monte Carlo Test - TOFB-I mode

An explanation of the tests for the TOFB-I mode follows.

\subsection*{5.7.1 The Known Answer Tests - TOFB-I Mode}

In the following description of the Known Answer tests, TEXT refers to plaintext, and RESULT refers to ciphertext if the IUT performs TOFB-I encryption. If the IUT supports TOFB-I decryption, TEXT refers to ciphertext, and RESULT refers to plaintext.

\subsection*{5.7.1. \(\quad\) The Variable TEXT Known Answer Test - TOFB-I Mode}

Table 57 The Variable TEXT Known Answer Test - TOFB-I Mode

\[
\begin{aligned}
& \text { RESULT }_{1}=\mathrm{O}_{\mathrm{i}} \oplus \text { TEXT } \\
& \text { T4: } \quad \text { TEMP } 3_{1} \text { is decrypted by } \mathrm{DEA}_{2} \text { using KEY2, resulting in } \\
& \text { TEMP }_{2} \\
& \text { TEMP } 2_{2} \text { is encrypted by } \mathrm{DEA}_{3} \text { using KEY3, resulting in } \mathrm{O} 2_{i} \\
& \text { RESULT }_{\mathrm{i}}=\mathrm{O} 2_{\mathrm{i}} \oplus \text { TEXT } \\
& \text { T5: } \quad \text { TEMP3 } 3_{2} \text { is encrypted by } \mathrm{DEA}_{3} \text { using KEY3, resulting in } \mathrm{O} 3_{i} \\
& \text { RESULT3 }_{i}=\mathrm{O}_{\mathrm{i}} \oplus \text { TEXT } \\
& \text { Send i, KEY (representing KEY1, KEY2, and KEY3), I1, I2, I3, TEXT, } \\
& \text { RESULT }_{1}{ }_{i}, \text { RESULT }_{i} \text {, } \text { RESULT3 }_{i} \\
& \mathrm{IV} 1_{\mathrm{i}+1}=\text { basis vector where single " } 1 \text { " bit is in position } \mathrm{i}+1 \\
& \mathrm{IV} 2_{\mathrm{i}+1}=\mathrm{IV} 1_{\mathrm{i}+1}+\mathrm{R}_{1} \bmod 2^{64} \text { where } \mathrm{R}_{1}=5555555555555555 \\
& \operatorname{IV} 3_{i+1}=\mathrm{IV} 1_{i+1}+\mathrm{R}_{2} \bmod 2^{64} \text { where } \mathrm{R}_{2}=\text { AAAAAAAAAAAAAAAA } \\
& \text { \} } \\
& \text { TMOVS: Compare RESULT1, RESULT2, and RESULT3 from each loop with known } \\
& \text { answers. See Table A.9. }
\end{aligned}
\]

As summarized in Table 57, the Variable TEXT Known Answer Test for the TOFB-I mode is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., \(K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101\) 010101010101.
b. Initializes the 3 initialization vectors accordingly: IV1 \(1_{1}\) is set to the basis vector containing a" 1 " in the first bit position and " 0 " in the following 63 positions, i.e., \(\mathrm{IV}_{1 \text { bin }}=1000\) 00000000. The equivalent of this value in hexadecimal notation is 8000000000 000000 . Based on specifications in ANSI X9.52-1998, IV2 \({ }_{1}\) is computed by the following equation: \(\mathrm{IV} 1_{1}+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=555555555555555\). In hexadecimal, this equates to D5 55555555555555 . And IV3 \({ }_{1}\) is computed by the equation \(\mathrm{IV} 1_{1}+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\) AAAAAAAAAAAAAAAA. In hexadecimal, this equates to 2A AA AA AA AA AA AA AA.
c. Initializes the TEXT parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{TEXT}_{\text {hex }}\) \(=0000000000000000\).
d. Forwards this information to the IUT using Input Type 13.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 64 :
a. With the feedback path disconnected:
1) At time T 1 :
a) Assign the value of the initialization vector \(\mathrm{IV} 1_{\mathrm{i}}\) to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP \(1_{1}\).
2) At time \(T 2\) :
a) Assign the value of the initialization vector IV \(2_{i}\) to the input block I2.
b) Process I2 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP \(2_{1}\).
c) \(\quad \mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2, resulting in intermediate value \(\mathrm{TEMP}_{2}\).
3) At time T3:
a) Assign the value of the initialization vector \(\operatorname{IV} 3_{i}\) to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP3 \({ }_{1}\).
c) TEMP \(2_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2, resulting in intermediate value TEMP \(2_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the RESULT1 \(1_{i}\) by exclusive-ORing \(\mathrm{O}_{1}\) with TEXT \(1_{i}\).

At time T4:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{O} 2_{2}\).
b) Calculate RESULT2 \(2_{\mathrm{i}}\) by exclusive-ORing \(\mathrm{O} 2_{i}\) with TEXT2 \(2_{\mathrm{i}}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2, resulting in intermediate value TEMP3 \(2_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{O}_{\mathrm{i}}\).
b) Calculate the RESULT3 \(3_{i}\) by exclusive-ORing \(\mathrm{O}_{\mathrm{i}}\) with \(\mathrm{TEXT}_{\mathrm{i}}\).
b. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV \(1_{i}\), IV \(2_{i}\), IV \(3_{i}\), TEXT, RESULT \(1_{i}\), RESULT \(_{2}\), and RESULT \(_{i}\), to the TMOVS as specified in Output Type 7.
c. Retain the RESULT1, RESULT2, and RESULT3 values for use with the Inverse Permutation Known Answer Test for the TOFB-I Mode (Section 5.7.1.2).
d. Assign a new value to the IV variables. IV1 \({ }_{i+1}\) is set to the value of a basis vector with a "1" bit in position \(i+1\), where \(i+1=2, \ldots, 64\). IV \(2_{i+1}\) is set to the value of \(\operatorname{IV} 1_{i+1}\) \(+R_{1} \bmod 2^{64}\) where \(R_{1}=5555555555555555\). And IV \(3_{i+1}\) is set to \(I V 1_{i+1}+R_{2} \bmod\) \(2^{64}\) where \(R_{2}=A A A A A A A A A A A A A A A A\).

NOTE -- This continues until every possible basis vector has been represented by the IV1, i.e., 64 times. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 7.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.9.

\subsection*{5.7.1.2 The Inverse Permutation Known Answer Test - TOFB-I Mode}

Table 58 The Inverse Permutation Known Answer Test - TOFB-I Mode

As summarized in Table 58 the Inverse Permutation Known Answer Test for the TOFB-I mode is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 to the constant hexadecimal value 0 with odd parity set, i.e., \(K E Y 1_{\text {hex }}=K E Y 2_{\text {hex }}=K E Y 3_{\text {hex }}=0101\) 010101010101.
b. Initializes the 3 initialization vectors accordingly: IV1 \(1_{1}\) is set to the basis vector containing a" 1 " in the first bit position and " 0 " in the following 63 positions, i.e., \(\mathrm{IV}_{1 \text { bin }}=1000\) 00000000. The equivalent of this value in hexadecimal notation is 8000000000 000000 . Based on specifications in ANSI X9.52-1998, IV2 \({ }_{1}\) is computed by the
following equation: \(\mathrm{IV} 1_{1}+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\). In hexadecimal, this equates to D5 55555555555555 . And \(\mathrm{IV}_{1}\) is computed by the equation \(\mathrm{IV} 1_{1}+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=A A A A A A A A A A A A A A A A\). In hexadecimal, this equates to 2 A AA AA AA AA AA AA AA.
c. Initializes the \(\operatorname{TEXTr}_{\mathrm{i}}\) (where \(\mathrm{r}=1, \ldots, 3\) and \(\mathrm{i}=1, \ldots, 64\)) to the RESULTr \(_{\mathrm{i}}\) obtained from the Variable TEXT Known Answer Test.
d. Forwards this information to the IUT using Input Type 15.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 64 :
a. With the feedback path disconnected:
1) At time T 1 :
a) Assign the value of the initialization vector \(\mathrm{IV} 1_{\mathrm{i}}\) to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP \(1_{1}\).
2) At time T2:
a) Assign the value of the initialization vector \(\operatorname{IV} 2_{i}\) to the input block I2.
b) Process I2 through the DEA stage DEA \(_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP2 \({ }_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2, resulting in intermediate value TEMP1 \({ }_{2}\).
3) At time T3:
a) Assign the value of the initialization vector \(\operatorname{IV} 3_{i}\) to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using KEY1, resulting in intermediate value TEMP3 \({ }_{1}\).
c) TEMP \(2_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2, resulting in intermediate value TEMP2 \({ }_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the RESULT1 \(1_{i}\) by exclusive-ORing \(\mathrm{O1}_{\mathrm{i}}\) with TEXT \(1_{\mathrm{i}}\).

At time T4:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{O} 2_{\mathrm{i}}\).
b) Calculate the RESULT2 \(2_{i}\) by exclusive-ORing \(\mathrm{O} 2_{\mathrm{i}}\) with \(\mathrm{TEXT}_{\mathrm{i}}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using KEY2, resulting in intermediate value TEMP3 \({ }_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using KEY3, resulting in output block \(\mathrm{OB}_{\mathrm{i}}\).
b) Calculate the RESULT3 \(3_{\mathrm{i}}\) by exclusive-ORing \(\mathrm{O}_{\mathrm{i}}\) with TEXT3 \(_{\mathrm{i}}\).
b. Forward the current values of the loop number i, KEY (representing KEY1, KEY2, and KEY3), IV \(1_{i}\), IV \(2_{i}\), IV \(3_{i}\), TEXT \(_{i}\), TEXT \(2_{i}\), TEXT \(3_{i}\), RESULT \(_{1}{ }_{i}\), RESULT \(_{\mathrm{i}}\), and RESULT3 \({ }_{\mathrm{i}}\), to the TMOVS as specified in Output Type 3.
c. Assign a new value to the IV variables. \(\mathrm{IV} 1_{\mathrm{i}+1}\) is set to the value of a basis vector with a " 1 " bit in position \(\mathrm{i}+1\), where \(\mathrm{i}+1=2, \ldots, 64\). IV \(2_{i+1}\) is set to the value of \(\operatorname{IV} 1_{i+1}+R_{1}\) \(\bmod 2^{64}\) where \(R_{1}=5555555555555555\). And \(I V 3_{i+1}\) is set to \(I V 1_{i+1}+R_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=A A A A A A A A A A A A A A A A\).
d. Assign a new value to the TEXT \(_{i+1}\), TEXT2 \(_{i+1}\), and TEXT3 \({ }_{i+1}\) by setting it equal to the corresponding output from the TMOVS.

NOTE -- This continues until every RESULT1, RESULT2, and RESULT3 value from the Variable TEXT Known Answer Test has been used as input. The output from the IUT should consist of 64 output strings. Each output string should consist of information included in Output Type 3.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values. The RESULT1, RESULT2, and RESULT3 values should be all zeros.

\subsection*{5.7.1.3 The Variable KEY Known Answer Test - TOFB-I Mode}

Table 59 The Variable KEY Known Answer Test - TOFB-I Mode
\begin{tabular}{|c|c|c|}
\hline TMOVS: & Initialize & \(\mathrm{KEY} 1_{1}=\mathrm{KEY} 2_{1}=\mathrm{KEY} 3_{1}=8001010101010101\) (odd parity set) \\
\hline & & \(\mathrm{IV} 1=0000000000000000\) \\
\hline & & \(\mathrm{IV} 2=5555555555555555\) \\
\hline & & IV3 \(=\) AAAAAAAAAAAAAAAA \\
\hline & & TEXT \(=0\) \\
\hline & Send & \(\mathrm{KEY}_{1}\) (representing \(\mathrm{KEY} 1_{1}, \mathrm{KEY}_{1}\), and \(\mathrm{KEY} 3_{1}\)), IV1, IV2, IV3, TEXT \\
\hline
\end{tabular}

IUT: \(\quad\) FOR \(\mathrm{i}=1\) to 64
IF \((i \bmod 8 \neq 0)\{\) process all bits except parity bits \(\}\)
\{
With the feedback path disconnected:
Perform Triple DES:

T1: \(\quad \mathrm{I} 1=\mathrm{IV} 1\)
I1 is read into TDEA and is encrypted by \(\mathrm{DEA}_{1}\) using \(K E Y 1_{i}\), resulting in TEMP1 \(1_{1}\)

T2: \(\quad\) I2 \(=\mathrm{IV} 2\)
I2 is read into TDEA and is encrypted by \(\mathrm{DEA}_{1}\) using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in TEMP2 \({ }_{1}\)

TEMP \(1_{1}\) is decrypted by \(\mathrm{DEA}_{2}\) using \(\mathrm{KEY} 2_{\mathrm{i}}\), resulting in TEMP \(_{1}\)

T3: \(\quad \mathrm{I} 3=\mathrm{IV} 3\)
I3 is read into TDEA and is encrypted by \(\mathrm{DEA}_{1}\) using \(K E Y 1_{i}\), resulting in TEMP \(3_{1}\)

TEMP \(2_{1}\) is decrypted by \(\mathrm{DEA}_{2}\) using \(\mathrm{KEY} 2_{i}\), resulting in TEMP \(_{2}\)

Connect the feedback path:
```

TEMP1 2 is encrypted by DEA
RESULT1 }\mp@subsup{\textrm{i}}{\textrm{i}}{= O1}\mp@subsup{1}{\textrm{i}}{}\oplus\mathrm{ TEXT
T4: $\quad$ TEMP3 $_{1}$ is decrypted by $\mathrm{DEA}_{2}$ using $K E Y 2_{i}$, resulting in TEMP $_{2}$
$\mathrm{TEMP}_{2}$ is encrypted by $\mathrm{DEA}_{3}$ using $\mathrm{KEY}_{\mathrm{i}}$, resulting in $\mathrm{O} 2_{\mathrm{i}}$
RESULT $_{\mathrm{i}}=\mathrm{O} 2_{\mathrm{i}} \oplus$ TEXT
T5: $\quad$ TEMP $_{2}$ is encrypted by $\mathrm{DEA}_{3}$ using $\mathrm{KEY}_{\mathrm{i}}$, resulting in $\mathrm{O}_{\mathrm{i}}$
RESULT3 $_{i}=\mathrm{O}_{\mathrm{i}} \oplus$ TEXT

```

Send \(\mathrm{i}, \mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\)), I1, I2, I3, TEXT, RESULT1 \(_{i}\), RESULT \(_{\mathrm{i}}\), RESULT3 \(_{i}\)

KEY \(1_{i+1}=K E Y 2_{i+1}=K E Y 3_{i+1}=\) vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position \(i+1\). Each parity bit may have the value " 1 " or " 0 " to make the KEY odd parity.
\}
TMOVS: Compare results of the 56 encryptions with known answers.
See Table A. 11.

As summarized in Table 59, the Variable KEY Known Answer Test for the TOFB-I Mode is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters \(\mathrm{KEY}_{1}, \mathrm{KEY}_{1}\), and \(\mathrm{KEY}_{1}\) to contain " 0 " in every significant bit except for a " 1 " in the first position, i.e., the 64 -bit \(\mathrm{KEY} 1_{1 \text { bin }}=\) \(K E Y 2_{1 \text { bin }}=K E Y 3_{1 \text { bin }}=1000000000000001000000010000000100000001\) 000000010000000100000001 . The equivalent of this value in hexadecimal notation is 8001010101010101 .

NOTE -- the parity bits are set to "0" or "1" to get odd parity.
b. Initializes the 3 initialization vectors accordingly: IV1 is set to zero, i.e., \(\mathrm{IV}_{1 \text { hex }}=\) 0000000000000000 . Based on specifications in ANSI X9.52-1998, IV2 is computed as IV1 \(+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=555555555555555\) and IV3 is computed as IV1 \(+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\) AAAAAAAAAAAAAAAA. Since
\(\mathrm{IV} 1_{\text {hex }}=0000000000000000\), this equates to IV \(2_{\text {hex }}=5555555555555555\) and \(\mathrm{IV} 3_{\text {hex }}=\) AAAAAAAAAAAAAAAA.
c. Initializes the TEXT parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{TEXT}_{\text {hex }}\) \(=0000000000000000\).
d. Forwards this information to the IUT using Input Type 13.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 64:
a. With the feedback path disconnected:
1) At time \(T 1\) :
a) Assign the value of the initialization vector IV1 to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(\mathrm{KEY} 1_{\mathrm{i}}\), resulting in intermediate value \(\mathrm{TEMP}_{1}\).
2) At time T2:
a) Assign the value of the initialization vector IV2 to the input block I2.
b) Process I2 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(2_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in intermediate value \(\mathrm{TEMP}_{1}\).
3) At time T3:
a) Assign the value of the initialization vector IV3 to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP3 \({ }_{1}\).
c) \(\quad\) TEMP \(2_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2_{2}\), resulting in intermediate value \(\mathrm{TEMP}_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the RESULT1 \(1_{i}\) by exclusive-ORing \(\mathrm{O}_{i}\) with TEXT.

At time T4:
a) \(\mathrm{TEMP}_{2}{ }_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O} 2_{\mathrm{i}}\).
b) Calculate the RESULT2 \(2_{\mathrm{i}}\) by exclusive-ORing \(\mathrm{O} 2_{\mathrm{i}}\) with TEXT.
c) TEMP3 \(3_{1}\) is fed into the DEA stage DEA \(_{2}\) in the decrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in intermediate value \(\mathrm{TEMP}_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{3}\).
b) Calculate the RESULT3 \({ }_{i}\) by exclusive-ORing \(\mathrm{O}_{\mathrm{i}}\) with TEXT.
b. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{1}\), KEY \(2_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\)), IV1, IV2, IV3, TEXT, RESULT \({ }_{i}\), RESULT2 \({ }_{\mathrm{i}}\), and RESULT \(_{i}\), to the TMOVS as specified in Output Type 7.
c. Set \(K E Y 1_{i+1}, K E Y 2_{i+1}\), and \(K E Y 3_{i+1}\) equal to the vector consisting of " 0 " in every significant bit position except for a single " 1 " bit in position \(i+1\). The parity bits contain " 1 " or " 0 " to make odd parity.

NOTE -- This processing should continue until every significant basis vector has been represented by the KEY parameters. The output from the IUT should consist of 56 output strings. Each output string should consist of information included in Output Type 7.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A.11.

Table 60 The Permutation Operation Known Answer Test - TOFB-I Mode

As summarized in Table 60, the Permutation Operation Known Answer Test for the TOFB-I Mode is performed as follows:
1. The TMOVS:
a. Initializes the KEY parameters KEY1, KEY2, and KEY3 with the 32 constant KEY values from Table A. 12.
b. Initializes the 3 initialization vectors accordingly: IV1 is assigned the value 0 , i.e., \(\mathrm{IV}_{\text {hex }}=0000000000000000\). Based on specifications in ANSI X9.52-1998, IV2 is computed by the following equation: IV1 \(+\mathrm{R}_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\). In hexadecimal, this equates to 5555555555555555. And IV3 is computed by the equation IV1 \(+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=A A A A A A A A A A A A A A A A\). In hexadecimal, this equates to AA AA AA AA AA AA AA AA.
c. Initializes the TEXT parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{TEXT}_{\text {hex }}\) \(=0000000000000000\).
d. Forwards this information to the IUT using Input Type 18.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 32 :
a. With the feedback path disconnected:
1) At time T 1 :
a) Assign the value of the initialization vector IV1 to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(1_{1}\).

At time T2:
a) Assign the value of the initialization vector IV2 to the input block I2.
b) Process I2 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP2 \({ }_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2_{i}\), resulting in intermediate value \(\mathrm{TEMP}_{2}\).

At time T3:
a) Assign the value of the initialization vector IV3 to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(3_{1}\).
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2\), resulting in intermediate value TEMP2 \({ }_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the RESULT1 \(1_{i}\) by exclusive-ORing \(\mathrm{O1}_{\mathrm{i}}\) with TEXT.

At time T4:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O} 2_{\mathrm{i}}\).
b) Calculate the RESULT2 2 by exclusive-ORing \(\mathrm{O} 2_{\mathrm{i}}\) with TEXT.
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in intermediate value TEMP3 \({ }_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O3}_{\mathrm{i}}\).
b) Calculate the RESULT3 \({ }_{i}\) by exclusive-ORing \(\mathrm{O}_{i}\) with TEXT.
b. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY}_{\mathrm{i}}\), \(\mathrm{KEY}_{\mathrm{i}}\), and \(\mathrm{KEY}_{\mathrm{i}}\)), IV1, IV2, IV3, TEXT, RESULT \(1_{\mathrm{i}}\), RESULT \(_{\mathrm{i}}\), and RESULT \(_{i}\), to the TMOVS as specified in Output Type 7.
c. Set \(\mathrm{KEY}_{1+1}, \mathrm{KEY}_{\mathrm{i}+1}\), and \(\mathrm{KEY}_{\mathrm{i}+1}\) equal to the corresponding \(\mathrm{KEY}_{\mathrm{i}+1}\) supplied by the TMOVS.

NOTE -- The above processing should continue until all 32 KEY values are processed. The output from the IUT for this test should consist of 32 output strings. Each output string should consist of information included in Output Type 7.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found Table A.12.

\subsection*{5.7.1.5 The Substitution Table Known Answer Test - TOFB-I Mode}

Table 61 The Substitution Table Known Answer Test - TOFB-I Mode

As summarized in Table 61, the Substitution Table Known Answer Test for the TCFB-P Mode is performed as follows:
1. The TMOVS:
a. Initializes the KEY-IV1 pairs with the 19 constant KEY-DATA values from Table A.10. The DATA values are assigned to the values of the initialization vectors \(\mathrm{IV} 1_{\mathrm{i}}\). The KEY value indicates the values of \(\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}\), and \(\mathrm{KEY} 3_{\mathrm{i}}\), i.e., \(K E Y 1_{i}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}\). Based on specifications in ANSI X9.52-1998, IV \(2_{\mathrm{i}}\) is computed as \(I V 1_{i}+R_{1} \bmod 2^{64}\) where \(R_{1}=5555555555555555\) and \(I V 3_{i}\) is computed as \(I V 1_{i}+R_{2} \bmod 2^{64}\) where \(R_{2}=\) AAAAAAAAAAAAAAAA.
b. Initializes the TEXT parameter to the constant hexadecimal value 0 , i.e., \(\mathrm{TEXT}_{\text {hex }}\) \(=0000000000000000\).
c. Forwards this information to the IUT using Input Type 25.
2. The IUT should perform the following for \(\mathrm{i}=1\) through 19:
a. With the feedback path disconnected:
1) At time T 1 :
a) Assign the value of the initialization vector \(\operatorname{IV} 1_{1}\) to the input block I1.
b) Process I1 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP1 \(1_{1}\).

At time T2:
a) Assign the value of the initialization vector \(\operatorname{IV} 2_{\mathrm{i}}\) to the input block I2.
b) Process I2 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(2_{1}\).
c) TEMP1 \(1_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2_{i}\), resulting in intermediate value \(\mathrm{TEMP}_{2}\).

At time T3:
a) Assign the value of the initialization vector \(\mathrm{IV} 3_{\mathrm{i}}\) to the input block I3.
b) Process I3 through the DEA stage \(\mathrm{DEA}_{1}\) in the encrypt state using \(K E Y 1_{i}\), resulting in intermediate value TEMP \(3_{1}\).
c) TEMP2 \(2_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2{ }_{\mathrm{i}}\), resulting in intermediate value TEMP \(2_{2}\).

Connect the feedback path:
d) \(\mathrm{TEMP1}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O1}_{\mathrm{i}}\).
e) Calculate the RESULT1 \(1_{\mathrm{i}}\) by exclusive-ORing \(\mathrm{O1}_{\mathrm{i}}\) with TEXT.

At time T4:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O}_{2}\).
b) Calculate RESULT2 \(2_{\mathrm{i}}\) by exclusive-ORing \(\mathrm{O} 2_{\mathrm{i}}\) with TEXT.
c) \(\mathrm{TEMP}_{1}\) is fed into the DEA stage \(\mathrm{DEA}_{2}\) in the decrypt state using \(K E Y 2_{i}\), resulting in intermediate value TEMP3 \(_{2}\).

At time T5:
a) \(\mathrm{TEMP}_{2}\) is fed into the DEA stage \(\mathrm{DEA}_{3}\) in the encrypt state using \(\mathrm{KEY}_{\mathrm{i}}\), resulting in output block \(\mathrm{O3}_{\mathrm{i}}\).
b) Calculate the RESULT3 \({ }_{i}\) by exclusive-ORing \(\mathrm{O}_{3}\) with TEXT.
b. Forward the current values of the loop number i, \(\mathrm{KEY}_{\mathrm{i}}\) (representing \(\mathrm{KEY} 1_{\mathrm{i}}\), KEY \(2_{\mathrm{i}}\), and \(\mathrm{KEY} 3_{\mathrm{i}}\)), \(\mathrm{IV} 1_{\mathrm{i}}, \mathrm{IV} 2_{\mathrm{i}}\), IV3 \({ }_{\mathrm{i}}\), TEXT, RESULT \(1_{\mathrm{i}}\), RESULT \(2_{\mathrm{i}}\), and RESULT3 \(_{i}\), to the TMOVS as specified in Output Type 7.
c. Set \(\mathrm{KEY}_{1+1}, \mathrm{KEY}_{\mathrm{i}_{+1}}\), and \(\mathrm{KEY}_{\mathrm{i}+1}\) equal to the corresponding \(\mathrm{KEY}_{\mathrm{i}+1}\) supplied by the TMOVS.
d. Set IV1 \(1_{i+1}\) equal to the corresponding DATA \(_{i+1}\) supplied by the TMOVS. Based on specifications in ANSI X9.52-1998, IV \(2_{i+1}\) is set to IV \(1_{i+1}+R_{1} \bmod 2^{64}\) where \(\mathrm{R}_{1}=5555555555555555\) and \(\mathrm{IV} 3_{\mathrm{i}+1}\) is set to \(\operatorname{IV} 1_{i+1}+\mathrm{R}_{2} \bmod 2^{64}\) where \(\mathrm{R}_{2}=\mathrm{AAAAAAAAAAAAAAAA}\).

NOTE -- The above processing should continue until all 19 KEY-DATA are processed. The output from the IUT for this test should consist of 19 output strings. Each output string should consist of information included in Output Type 7.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to the known values found in Table A. 10.

\subsection*{5.7.2 The Monte Carlo Tests - TOFB-I Mode}

The TOFB-I mode of operation has one Monte Carlo test that is used regardless of the process, i.e., the same Monte Carlo test is used for IUTs supporting the encryption and/or decryption process. In the following description of the Monte Carlo test, TEXT refers to plaintext, and RESULT refers to ciphertext if the IUT performs TOFB-I encryption. If the IUT supports TOFBI decryption, TEXT refers to ciphertext, and RESULT refers to plaintext.

Table 62 The Monte Carlo Test - TOFB-I Mode

```

KEY1 1+1 = KEY1 1 }\oplus\mp@subsup{\textrm{RESULT}}{\textrm{j}}{

```

``` \(K E Y 2_{i}\), and \(K E Y 3_{i}\) are independent)
\[
K E Y 2_{i+1}=K E Y 2_{i} \oplus \operatorname{RESULT}_{\mathrm{j}-1}
\]
```


ELSE

```
\[
\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{RESULT}_{\mathrm{j}}
\]
IF \(\left(K E Y 1_{i}=K E Y 2_{i}=K E Y 3_{i}\right)\) or \(\left(K E Y 1_{i}\right.\) and \(K E Y 2_{i}\) are independent and \(\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}\) )
\[
\mathrm{KEY}_{\mathrm{i}+1}=\mathrm{KEY}_{\mathrm{i}} \oplus \mathrm{RESULT}_{\mathrm{j}}
\]
```


ELSE

```
            KEY3 }\mp@subsup{\textrm{i}+1}{}{=}=\mp@subsup{\textrm{KEY3}}{\textrm{i}}{}\oplus\mp@subsup{\mathrm{ RESULT}}{\textrm{j}-2}{
            TEXT 
            I0= Oj
                    I1 =I0 + R R mod 2 }\mp@subsup{}{}{64}\mathrm{ where R R =55555555555555555
                                    I2 =I0 + R R2 mod 2 }\mp@subsup{}{}{64}\mathrm{ where R R2 =AAAAAAAAAAAAAAAA
}
TMOVS: Check the IUT's output for correctness.
```

As summarized in Table 62, the Monte Carlo Test for the TOFB-I is performed as follows:

1. The TMOVS:
a. Initializes the KEY parameters $\mathrm{KEY} 1_{0}, \mathrm{KEY}_{2}{ }_{0}$, and KEY_{3}, the initialization vectors IV1, IV2, and IV3, and the TEXT ${ }_{0}$. The TEXT, IVs, and KEYs consist of 64 bits each. IV2 is assigned the value of IV1 $+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=$ 5555555555555555. IV 3 is assigned the value of IV $1+R_{2} \bmod 2^{64}$ where $R_{2}=$ AAAAAAAAAAAAAAAA.
b. Forwards this information to the IUT using Input Type 24.
2. The IUT should perform the following for $\mathrm{i}=0$ through 399:
a. Record the current values of the output loop number i, KEY1 $1_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}, \mathrm{KEY}_{\mathrm{i}}$, IV1, IV2, IV3, and TEXT ${ }_{0}$.
b. Perform the following for $\mathrm{j}=0$ through 9,999:
1) If $\mathrm{j}=0,1$, or 2 , assign the value of the initialization vector $\operatorname{IV}(\mathrm{j}+1)$ to the input block Ij .
2) If $\mathrm{j}>2$, assign Ij with the value of the output block $\mathrm{O}(\mathrm{j}-2)$.
3) Process Ij through the DEA stage DEA_{1} in the encrypt state using $\mathrm{KEY} 1_{i}$, resulting in intermediate value TEMP1.
4) TEMP1 is fed into the DEA stage DEA_{2} in the decrypt state using KEY2 ${ }_{i}$, resulting in intermediate value TEMP2.
5) TEMP2 is fed into the DEA stage DEA_{3} in the encrypt state using $\mathrm{KEY}_{\mathrm{i}}$, resulting in output block O_{j}.
6) Calculate the RESULT T_{j} by exclusive-ORing the O_{j} with the $\mathrm{TEXT}_{\mathrm{j}}$.
7) Prepare for loop $\mathrm{j}+1$ by assigning the $\mathrm{TEXT}_{\mathrm{j}+1}$ with the value of the Ij .
c. Record the current values of the input block I0 and RESULT T_{j}.
d. Forward all recorded values for this loop, as specified in Output Type 8, to the MOVS.
e. In preparation for the next output loop:
8) Assign new values to the KEY parameters, KEY1, KEY2, and KEY3 in preparation for the next outer loop.

The new $\mathrm{KEY}_{\mathrm{i}_{\mathrm{i} 1}}$ should be calculated by exclusive-ORing the current $K E Y 1_{i}$ with the RESULT $_{j}$.

The new $\mathrm{KEY} 2_{\mathrm{i}+1}$ calculation is based on the values of the keys. If $\mathrm{KEY} 1_{\mathrm{i}}$ and $\mathrm{KEY} 2_{\mathrm{i}}$ are independent and $\mathrm{KEY} 3_{\mathrm{i}}=\mathrm{KEY} 1_{\mathrm{i}}$, or $\mathrm{KEY} 1_{\mathrm{i}}, \mathrm{KEY} 2_{\mathrm{i}}$, and $\mathrm{KEY}_{\mathrm{i}}$ are independent, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $K E Y 2_{i}$ with the RESULT $_{j-1}$. If $\mathrm{KEY} 1_{\mathrm{i}}=\mathrm{KEY} 2_{\mathrm{i}}=\mathrm{KEY} 3_{\mathrm{i}}$, the new $\mathrm{KEY} 2_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the RESULT $_{j}$.

The new $\mathrm{KEY}_{\mathrm{i}+1}$ calculation is also based on the values of the keys. If $K E Y 1_{i}, K E Y 2_{i}$, and $K E Y 3_{i}$ are independent, the new $K E Y 3_{i+1}$ should be calculated by exclusive-ORing the current KEY_{3} with the $\mathrm{RESULT}_{\mathrm{j}-2}$. If KEY_{1} and $\mathrm{KEY}_{\mathrm{i}}$ are independent and $\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, or if
$\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}=\mathrm{KEY}_{\mathrm{i}}$, the new $\mathrm{KEY}_{\mathrm{i}+1}$ should be calculated by exclusive-ORing the current $\mathrm{KEY}_{\mathrm{i}}$ with the RESULT $_{j}$.
2) Assign a new value to the TEXT_{0}. The TEXT_{0} should be assigned the value of the current Ij exclusive-ORed with TEXT_{0}.
3) Assign a new value to the I parameters. I0 should be assigned the value of O_{j}. I1 should be assigned the value of $\mathrm{I} 0+\mathrm{R}_{1} \bmod 2^{64}$ where $\mathrm{R}_{1}=$ 5555555555555555 . I2 should be assigned the value of $10+R_{2} \bmod 2^{64}$ where $\mathrm{R}_{2}=$ AAAAAAAAAAAAAAAA.

NOTE -- the new TEXT and I should be denoted as TEXT_{0} and I_{0} because these values are used for the first pass through the inner loop when $\mathrm{j}=0$.

NOTE -- The output from the IUT for this test should consist of 400 output strings. Each output string should consist of information included in Output Type 8.
3. The TMOVS checks the IUT's output for correctness by comparing the received results to known values.

6. DESIGN OF THE TRIPLE DES MODES OF OPERATION VALIDATION SYSTEM (TMOVS)

6.1 Design Philosophy

NIST validation programs are conformance tests rather than measures of product security. NIST validation tests are designed to assist in the detection of accidental implementation errors, and are not designed to detect intentional attempts to misrepresent conformance. Thus, validation by NIST should not be interpreted as an evaluation or endorsement of overall product security.

An IUT is considered validated for a test option when it passes the appropriate set of TMOVS tests. TMOVS testing is via statistical sampling, so validation of an option does not guarantee 100% conformance with the option in the standards.

The intent of the validation process is to provide a rigorous conformance process that can be performed at modest cost. NIST does not try to prevent a dishonest vendor from purchasing a validated implementation and using this implementation as the vendor's IUT. Customers who wish to protect themselves against a dishonest vendor could require that the vendor revalidate the IUT in the customer's presence.

6.2 Operation of the TMOVS

TMOVS testing is done through the NIST Cryptographic Module Validation (CMV) Program. The CMV Program uses laboratories accredited by the NIST National Voluntary Laboratory Accreditation Program (NVLAP) to perform conformance tests to cryptographic-related FIPS. A vendor contracts with a Cryptographic Module Testing (CMT) Laboratory accredited by NVLAP. The CMT laboratory either conducts the TMOVS tests on the IUT or supplies initial values to the vendor to conduct the tests. If the vendor conducts the tests, the vendor sends the results to the CMT where they are verified. In both situations, the CMT laboratory submits the results to NIST for validation. If the IUT has successfully completed the tests, NIST issues a validation certificate for the IUT to the vendor. A list of CMT laboratories is available at http://csrc.nist.gov/cryptval.

Appendix A

Tables of Values for the Known Answer Tests

Tables A. 1 through A. 4 were used with single DES. They will work with the triple DES Validation Modes that are backwards compatible with their single counterparts. These include TECB, TCBC, TCFB, and TOFB.

The other tables include the values obtained for ciphertexts C2 and C3. These values are a result of having three initialization vectors. These tables can be used with the interleaved and pipelined configurations of the Triple DES modes of operation.

Table A. 1 Resulting Ciphertext from the Variable Plaintext Known Answer Test
for the TECB, TCBC, TCFB, and TOFB Modes of Operation
(NOTE -- KEY1=KEY2=KEY3 = 0101010101010101 (odd parity set))

ROUND	PLAINTEXT or IV (depending on mode)	CIPHERTEXT
0	8000000000000000	95 F8 A5 E5 DD 31 D9 00
1	4000000000000000	DD 7F 12 1C A5 01 56 19
2	2000000000000000	2E 86 53 10 4F 38 34 EA
3	1000000000000000	4B D3 88 FF 6C D8 1D 4F
4	0400000000000000	20 B9 E7 67 B2 FB 14 56
5	0200000000000000	55 57 93 80 D7 71 38 EF
6		6C C5 DE FA AF 04 51 2F

ROUND	PLAINTEXT or IV (depending on mode)	CIPHERTEXT
7	0100000000000000	0D 9F 27 9B A5 D8 7260
8	0080000000000000	D9 03 1B 0271 BD 5A 0A
9	0040000000000000	424250 B3 7C 3D D9 51
10	0020000000000000	B8 06 1B 7E CD 9A 21 E5
11	0010000000000000	F1 5D 0F 28 6B 65 BD 28
12	0008000000000000	AD D0 CC 8D 6E 5D EB A1
13	0004000000000000	E6 D5 F8 2752 AD 63 D1
14	0002000000000000	EC BF E3 BD 3F 59 1A 5E
15	0001000000000000	F3 56834379 D1 65 CD
16	0000800000000000	2B 9F 98 2F 2003 7F A9
17	0000400000000000	88 9D E0 68 A1 6F 0B E6
18	0000200000000000	E1 9E 27 5D 84 6A 1298
19	0000100000000000	32 9A 8E D5 23 D7 1A EC
20	0000080000000000	E7 FC E2 2557 D2 3C 97
21	0000040000000000	12 A9 F5 81 7F F2 D6 5D

ROUND	PLAINTEXT or IV (depending on mode)	CIPHERTEXT
22	0000020000000000	A4 84 C3 AD 38 DC 9C 19
23	0000010000000000	FB E0 0A 8A 1E F8 AD 72
24	0000008000000000	75 0D 079407521363
25	0000004000000000	64 FE ED 9C 72 4C 2F AF
26	0000002000000000	F0 2B 26 3B 32 8E 2B 60
27	0000001000000000	9D 6455 5A 9A 10 B8 52
28	0000000800000000	D1 06 FF 0B ED 5255 D 7
29	0000000400000000	E1 65 2C 6B 13 8C 64 A5
30	0000000200000000	E4 28581186 EC 8F 46
31	0000000100000000	AE B5 F5 ED E2 2D 1A 36
32	0000000080000000	E9 43 D7 56 8A EC 0C 5C
33	0000000040000000	DF 98 C8 27 6F 54 B0 4B
34	0000000020000000	B1 60 E4 68 0F 6C 69 6F
35	0000000010000000	FA 0752 B0 7D 9C 4A B8
36	0000000008000000	CA 3A 2B 03 6D BC 8502

ROUND	PLAINTEXT or IV (depending on mode)	CIPHERTEXT
37	0000000004000000	5E 090551 7B B5 9B CF
38	0000000002000000	81 4E EB 3B 91 D9 0726
39	0000000001000000	4D 49 DB 153291 9C 9F
40	0000000000800000	25 EB 5F C3 F8 CF 0621
41	0000000000400000	AB 6A 20 C0 62 0D 1C 6F
42	0000000000200000	79 E9 0D BC 98 F9 2C CA
43	0000000000100000	86 6E CE DD 8072 BB 0E
44	0000000000080000	8B 5453 6F 2F 3E 64 A8
45	0000000000040000	EA 51 D3 975595 B8 6B
46	0000000000020000	CA FF C6 AC 4542 DE 31
47	0000000000010000	8D D4 5A 2D DF 9079 6C
48	0000000000008000	1029 D5 5E 88 0E C2 D0
49	0000000000004000	5D 86 CB 2363 9D BE A9
50	0000000000002000	1D 1C A8 53 AE 7C 0C 5F
51	0000000000001000	CE 33232924 8F 3228

ROUND	PLAINTEXT or IV (depending on mode)	CIPHERTEXT
52	0000000000000800	8405 D1 AB E2 4F B9 42
53	0000000000000400	E6 43 D7 8090 CA 4207
54	0000000000000200	4822 1B 993774 8A 23
55	0000000000000100	DD 7C 0B BD 61 FA FD 54
56	0000000000000080	2F BC 29 1A 57 0D B5 C4
57	0000000000000040	E0 7C 30 D7 E4 E2 6E 12
58	0000000000000020	0953 E 225 8E 8E 90 A1
59	0000000000000010	5B 71 1B C4 CE EB F2 EE
60	0000000000000008	CC 08 3F 1E 6D 9E 85 F6
61	0000000000000004	D2 FD 8867 D5 0D 2D FE
62	0000000000000002	06 E 7 EA 22 CE 9270 8F
63	0000000000000001	16 6B 40 B4 4A BA 4B D6

Table A. 2 Resulting Ciphertext from the Variable Key Known Answer Test for the TECB, TCBC, TCFB, and TOFB Modes of Operation
(NOTE -- Plaintext/text = 0000000000000000 and, where applicable, IV = 0000000000000000)

ROUND	KEY	CIPHERTEXT
0	8001010101010101	95 A8 D7 2813 DA A9 4D
1	4001010101010101	0E EC 1487 DD 8C 26 D5
2	2001010101010101	7A D1 6F FB 79 C4 5926
3	1001010101010101	D3 746294 CA 6A 6C F3
4	0801010101010101	80 9F 5F 87 3C 1F D7 61
5	0401010101010101	C0 2F AF FE C9 89 D1 FC
6	0201010101010101	4615 AA 1D 33 E7 2F 10
7	0180010101010101	2055123350 C 00858
8	0140010101010101	DF 3B 99 D6 577397 C8
9	0120010101010101	31 FE 1736 9B 5288 C 9
10	0110010101010101	DF DD 3C C6 4D AE 1642
11	0108010101010101	17 8C 83 CE 2B 39 9D 94

ROUND	KEY	CIPHERTEXT
12	0104010101010101	50 F6 3632 4A 9B 7F 80
13	0102010101010101	A8 46 8E E3 BC 18 F0 6D
14	0101800101010101	A2 DC 9E 92 FD 3C DE 92
15	0101400101010101	CA C0 9F 797 D 031287
16	0101200101010101	90 BA 68 0B 22 AE B5 25
17	0101100101010101	CE 7A 24 F3 50 E2 80 B6
18	0101080101010101	88 2B FF 0A A0 1A 0B 87
19	0101040101010101	25610288924511 C 2
20	0101020101010101	C715 16 C2 9C 75 D170
21	0101018001010101	5199 C 29 A 52 C 9 F 059
22	0101014001010101	C2 2F 0A 29 4A 71 F2 9F
23	0101012001010101	EE 37148371 4C 02 EA
24	0101011001010101	A8 1F BD 44 8F 9E 52 2F
25	0101010801010101	4F 64 4C 92 E1 92 DF ED
26	0101010401010101	1A FA 9A 66 A6 DF 92 AE
27	0101010201010101	B3 C1 CC 71 5C B8 79 D8

ROUND	KEY	CIPHERTEXT
28	0101010180010101	19 D0 32 E6 4A B0 BD 8B
29	0101010140010101	3C FA A7 A7 DC 8720 DC
30	0101010120010101	B7 26 5F 7F 44 7A C6 F3
31	0101010110010101	9D B7 3B 3C 0D 16 3F 54
32	0101010108010101	8181 B6 5B AB F4 A9 75
33	0101010104010101	93 C9 B6 4042 EA A2 40
34	0101010102010101	5570530829705592
35	0101010101800101	8638809 E 878787 A 0
36	0101010101400101	41 B9 A7 9A F7 9A C2 08
37	0101010101200101	7A 9B E4 2F 2009 A8 92
38	0101010101100101	2903 8D 56 BA 6D 2745
39	0101010101080101	5495 C6 AB F1 E5 DF 51
40	0101010101040101	AE 13 DB D5 61488933
41	0101010101020101	02 4D 1F FA 8904 E3 89
42	0101010101018001	D1 399712 F9 9B F0 2E
43	0101010101014001	14 C1 D7 C1 CF FE C7 9E

ROUND	KEY	CIPHERTEXT
44	0101010101012001	1D E5 27 9D AE 3B ED 6F
45	0101010101011001	E9 41 A3 3F 85501303
46	0101010101010801	DA 99 DB BC 9A 03 F3 79
47	0101010101010401	B7 FC 92 F9 1D 8E 92 E9
48	0101010101010201	AE 8E 5C AA 3C A0 4E 85
49	0101010101010180	9C C6 2D F4 3B 6E ED 74
50	0101010101010140	D8 63 DB B5 C5 9A 91 A0
51	0101010101010120	A1 AB 219054 5B 91 D7
52	0101010101010110	087504 1E 64 C5 70 F7
53	0101010101010108	5A 594528 BE BE F1 CC
54	0101010101010104	FC DB 3291 DE 21 F0 C0
55	0101010101010102	86 9E FD 7F 9F 26 5A 09

Table A. 3 Values To Be Used for the Permutation Operation Known Answer Test for the TECB, TCBC, TCFB, and TOFB Modes of Operation
(NOTE -- P/TEXT $=0000000000000000$ for each round
where applicable, IV = 0000000000000000 .

ROUND	KEY	C/RESULT
0	1046913489980131	88 D5 5E 54 F5 4C 97 B4
1	10071034899880 20	0C 0C C0 0C 83 EA 48 FD
2	10071034 C8 98 01 20	83 BC 8E F3 A6 57 01 83
3	10461034899880 20	DF 72 5D CA D9 4E A2 E9
4	1086911519580101	AF 52 71 20 C4 85 CB B0
5	5107 B0 15 19 58 01 01	0F 04 CE 39 3D B9 26 D5
6	1007 B0 15 19 19 01 01	C9 F0 0F FC 74 07 90 67
7	31907915498080101	7C FD 82 A5 93 25 2B 4E
8	3107919498080101	CB 49 A2 F9 E9 13 63 E3
9	10079115 B9 08 01 40	00 B5 88 BE 70 D2 3F 56
10		

ROUND	KEY	C/RESULT
11	3107911598080140	40 6A 9A 6A B4 3399 AE
12	1007 D0 1589980101	6C B7 7361 1D CA 9A DA
13	9107911589980101	67 FD 21 C1 7D BB 5D 70
14	9107 D0 1589190101	9592 CB 4110430787
15	1007 D0 1598980120	A6 B7 FF 68 A3 18 DD D3
16	1007940498190101	4D 102196 C9 14 CA 16
17	0107910491190401	2D FA 9F 4573594965
18	0107910491190101	B4 660481 6C 0E 0774
19	0107940491190401	6E 7E 6221 A4 F3 4E 87
20	19079210981 A 0101	AA 85 E7 4643233199
21	1007911998190801	2E 5A 19 DB 4D 1962 D6
22	1007911998 1A 0801	23 A8 66 A8 09 D3 0894
23	1007921098190101	D8 12 D9 61 F0 17 D3 20
24	100791159819010 B	05560581 6E 58608 F
25	1004801598190101	AB D8 8E 8B 1B 7716 F1
26	1004801598190102	53 7A C9 5B E6 9D A1 E1

ROUND	KEY
27	1004801598190108
C/RESULT	
28	1002911598100104
1002911598190104	AE D0 F6 AE 3C 25 CD D8
29	1002911598100201
30	1002911698100101
31	E2 C7 9C 71 92 1A 2E F8

Table A. 4 Values To Be Used for the Substitution Table Known Answer Test for the TECB, TCBC, TCFB, and TOFB Modes of Operation

ROUND	KEY	P/TEXT	C/RESULT
0	7C A1 1045 4A 1A 6E 57	01 A1 D6 D0 39776742	69 0F 5B 0D 9A 2693 9B
1	0131 D9 61 9D C1 37 6E	5C D5 4C A8 3D EF 57 DA	7A 38 9D 1035 4B D2 71
2	07 A1 13 3E 4A 0B 2686	0248 D4 3806 F6 7172	86 8E BB 51 CA B4 59 9A
3	384967 4C 2602319 E	5145 4B 58 2D DF 440 A	717887 6E 01 F1 9B 2A
4	04 B9 15 BA 43 FE B5 B6	42 FD 44305957 7F A2	AF 37 FB 42 1F 8C 4095
5	0113 B9 70 FD 34 F2 CE	059 BE 0851 CF 14 3A	86 A5 60 F1 0E C6 D8 5B
6	0170 F1 7546 8F B5 E6	0756 D 8 E 0774761 D2	0C D3 DA 020021 DC 09
7	4329 7F AD 38 E3 73 FE	762514 B8 29 BF 48 6A	EA 67 6B 2C B7 DB 2B 7A
8	07 A7 137045 DA 2A 16	3B DD 119049372802	DF D6 4A 815 C AF 1A 0F
9	04689104 C2 FD 3B 2F	2695 5F 6835 AF 60 9A	5C 51 3C 9C 4886 C 088
10	37 D0 6B B5 16 CB 7546	16 4D 5E 40 4F 275232	0A 2A EE AE 3F F4 AB 77
11	1F 0826 0D 1A C2 46 5E	6B 05 6E 1875 9F 5C CA	EF 1B F0 3E 5D FA 57 5A
12	58402364 1A BA 6176	00 4B D6 EF 09176062	88 BF 0D B6 D7 0D EE 56
13	025816164629 B0 07	48 0D 3900 6E E7 62 F2	A1 F9 91554102 0B 56

ROUND	KEY	P/TEXT	C/RESULT
14	4979 3E BC 79 B3 258 F	437540 C 869 8F 3C FA	6F BF 1C AF CF FD 0556
15	4F B0 5E 1515 AB 73 A7	07 2D 43 A0 77075292	2F $22 \mathrm{E} 49 \mathrm{BAB} 7 \mathrm{C} \mathrm{A1} \mathrm{AC}$
16	49 E9 5D 6D 4C A2 29 BF	02 FE 55778117 F 12 A	5A 6B $612 \mathrm{CC2}$ 6C CE 4A
17	018310 DC 40 9B 26 D6	1D 9D 5C 5018 F7 28 C2	5F 4C 038 8E D1 2B 2E 41
18	1C 58 7F 1C 1392 4F EF	30553228 6D 6F 29 5A	63 FA C0 D0 34 D9 F7 93

Table A. 5 Resulting Ciphertext from the Variable Plaintext Known Answer Test for TCBC-I Mode of Operation (NOTE -- KEY1 $=$ KEY2 $=$ KEY3 $=0101010101010101$

$$
\begin{aligned}
& \text { IV1 }=0000000000000000 \\
& \text { IV2 }=5555555555555555 \\
& \text { IV3 }=\text { aa aa aa aa aa aa aa aa) }
\end{aligned}
$$

ROUND	INPUTBLOCK 1	CIPHERTEXT1	INPUTBLOCK 2	CIPHERTEXT2	INPUTBLOCK 3	CIPHERTEXT3
0	8000000000000000	95f8a5e5dd31d900	d555555555555555	f7552ab6cb21e2bc	2aaaaaaaaaaaaaa	5a48d3de869557fd
1	4000000000000000	dd7f121ca5015619	1555555555555555	e0c2af1ebd89a262	eaaaaaaaaaaaaaa	f15ee2019a5b547c
2	2000000000000000	2e8653104f3834ea	7555555555555555	05b865a1e49ed109	8аaаaаaаaаaaaaa	3bee595ef860316a
3	1000000000000000	4bd388ff6cd81d4f	4555555555555555	b447313fc704d321	baaaaaaaaaaaaaa	f6089ca9b722765c
4	0800000000000000	20b9e767b2fb1456	5d55555555555555	c39193d42381b313	a2aaaaaaaaaaaaa	af15a8e9b2c14de5
5	0400000000000000	55579380d77138ef	5155555555555555	6a2afdae188494b8	aeaaaaaaaaaaaaa	45089186180bd591
6	0200000000000000	6cc5defaaf04512f	5755555555555555	1359f4d663a3209c	a8aaaaaaaaaaaaa	280d3ae3a00cfbc9
7	0100000000000000	0d9f279ba5d87260	5455555555555555	4a035e6a81d1314b	abaaaaaaaaaaaaa	d27eb94e56c3172a
8	0080000000000000	d9031b0271bd5a0a	55d5555555555555	4334b5fe1b7f5320	aa2aaaaaaaaaaaa	b0555ab990b7e95c
9	0040000000000000	424250b37c3dd951	5515555555555555	f41a29e0d31107b4	aaeaaaaaaaaaaaa	f54f2bd8e2eb2bc6
10	0020000000000000	b8061b7ecd9a21e5	5575555555555555	c8eb2e340855325b	aa8aaaaaaaaaaaa	d51175259c607fb4

ROUND	INPUTBLOCK 1	CIPHERTEXT1	INPUTBLOCK 2	CIPHERTEXT2	INPUTBLOCK 3	CIPHERTEXT3
11	0010000000000000	f15d0f286b65bd28	5545555555555555	b75847a2f3f2458a	aabaaaaaaaaaaaa	72ea3aadb569af43
12	0008000000000000	add0cc8d6e5deba1	555d555555555555	be433af4c5ae0f97	aaa2aaaaaaaaaaa	9b003151e8602b7d
13	0004000000000000	e6d5f82752ad63d1	5551555555555555	f68101d125e2e284	aaaeaaaaaaaaaaa	fc1463bb9bba9e11
14	0002000000000000	ecbfe3bd3f591a5e	5557555555555555	fa510732fa871094	aaa8aaaaaaaaaaa	65f94c59c59b06e1
15	0001000000000000	f356834379d165cd	5554555555555555	458d97a8b6ebd0d7	aaabaaaaaaaaaaa	fbcfc086f8111572
16	0000800000000000	2b9f982f20037fa9	5555d55555555555	f4169ca3fc6799ed	aaa2aaaaaaaaaa	68c9e70b9de8db79
17	0000400000000000	889de068a16f0be6	5555155555555555	f47b9f01a5ee74e9	aaaaeaaaaaaaaaa	63fc8ec1421399b8
18	0000200000000000	e19e275d846a1298	5555755555555555	ee26a403caca387d	aaaa8aaaaaaaaaa	3f1d10e9a1a44a92
19	0000100000000000	329a8ed523d71aec	5555455555555555	af7e5ad1d9f4ecf8	aaaabaaaaaaaaaa	e3f663de44003f9b
20	0000080000000000	e7fce22557d23c97	55555 d 5555555555	bb04e854f99f6352	aaaa2aaaaaaaaa	bc2452fd13e00dcc
21	0000040000000000	12a9f5817ff2d65d	5555515555555555	01f57b1e69290d90	aaaaaeaaaaaaaaa	4432a11e1c320e7a
22	0000020000000000	a484c3ad38dc9c19	5555575555555555	8ae9dee849b46527	aaaaa8aаaaaaaaa	a1e9e67f13f932b3
23	0000010000000000	fbe00a8a1ef8ad72	5555545555555555	cb706efba6b5110e	aaaaabaaaaaaaaa	6fd1d0793c1b7af2
24	0000008000000000	750 d 079407521363	555555d555555555	b8b27d1286bdbb26	aaaaa2aaaaaaaa	3d2c39f9d26b589e
25	0000004000000000	64feed9c724c2faf	5555551555555555	9862c9d770558095	aaaaaaeaaaaaaaa	e3a7abc88132ad7d
26	0000002000000000	f02b263b328e2b60	5555557555555555	a213c5c56fdca139	aaaaaa8aaaaaaaa	08cd945738a222c8

ROUND	INPUTBLOCK 1	CIPHERTEXT1	INPUTBLOCK 2	CIPHERTEXT2	INPUTBLOCK 3	CIPHERTEXT3
27	0000001000000000	9d64555a9a10b852	5555554555555555	a3bebc0e23ab87f2	aaaaaabaaaaaaaa	568fa34d2fc7225e
28	0000000800000000	d106ff0bed5255d7	5555555d55555555	c32c19229d84e2b4	aaaaaa2 ${ }^{\text {aaaaaaa }}$	3771887d7266b49d
29	0000000400000000	e1652c6b138c64a5	5555555155555555	e628ceae5cb3bb34	aaaaaaeaaaaaaa	edd6029a6b80a442
30	0000000200000000	e428581186ec8f46	5555555755555555	5924454953 ad 5732	aaaaaaa8aaaaaaa	0313da097aec4a43
31	0000000100000000	aeb5f5ede22d1a36	5555555455555555	7cc987f5fb33b813	aaaaaabaaaaaaa	91f5b30f015b4a54
32	0000000080000000	e943d7568aec0c5c	55555555d5555555	88e3dd1448c4e0ff	aaaaaaa22aaaaaa	1e60759f038beec 1
33	0000000040000000	df98c8276f54b04b	5555555515555555	a49d286e5dfc6143	aaaaaaaeaaaaaaa	97061699383bbfe0
34	0000000020000000	b160e4680f6c696f	5555555575555555	a5206a311e9c2515	aaaaaaaa8aaaaaa	311f3c96e071f173
35	0000000010000000	fa0752b07d9c4ab8	5555555545555555	b6e4686a8b957cf2	aaaaaaabaaaaaa	1a6849edcb701b07
36	0000000008000000	ca3a2b036dbc8502	555555555 d 555555	af1200418fd37fdd	aaaaaaaa2aaaaa	fa5b2fa26d03558b
37	0000000004000000	5e0905517bb59bcf	5555555551555555	487deccf0fde5b88	aaaaaaaaeaaaaa	bcaa0b7b7b3464c5
38	0000000002000000	814eeb3b91d90726	5555555557555555	456a1865905ed57d	aaaaaaaaa8aaaaa	3d245b501c6abb74
39	0000000001000000	4d49db1532919c9f	5555555554555555	3e2601fa20895e62	aaaaaaaabaaaaaa	62133d9330e2e86b
40	0000000000800000	25eb5fc3f8cf0621	5555555555d55555	58da89972266a7e3	aaaaaaaaa2aaaaa	5d7d6bd225890b4d
41	0000000000400000	ab6a20c0620d1c6f	5555555555155555	feaca17e5dd05c87	aaaaaaaaaeaaaaa	db36baba70c3b9af
42	0000000000200000	79e90dbc98f92cca	5555555555755555	88249b73e99c5ac0	aaaaaaaaa8aaaaa	a2f5ea90c2179ab4

ROUND	INPUTBLOCK 1	CIPHERTEXT1	INPUTBLOCK 2	CIPHERTEXT2	INPUTBLOCK 3	CIPHERTEXT3
43	0000000000100000	866ecedd8072bb0e	5555555555455555	5f8add8784cc3174	aaaaaaaaabaaaaa	70470a07cb34e109
44	0000000000080000	8b54536f2f3e64a8	55555555555 d 5555	cd8dc942ae2bb175	aaaaaaaaaa2aaaa	659610094ab3824e
45	0000000000040000	ea51d3975595b86b	5555555555515555	cf8442863e68e644	aаaaaaaaaaaeaaaa	26e6223634c857a3
46	0000000000020000	caffc6ac4542de31	5555555555575555	16952dc89c0acd65	aaaaaaaaaaa8aaaa	ddd0a647be96041f
47	0000000000010000	8dd45a2ddf90796c	5555555555545555	8a4fca2b00c49807	aaaaaaaaaabaaaa	363219d8cec5a9f3
48	0000000000008000	1029d55e880ec2d0	555555555555 d 555	b40225aea121c8d3	aaaaaaaaaaa2aaa	bb5710f9dc8dde46
49	0000000000004000	5d86cb23639dbea9	5555555555551555	711c066c13222f1c	aaaaaaaaaaaeaaa	ae527ed311a25ea2
50	0000000000002000	1d1ca853ae7c0c5f	5555555555557555	4fb69c832db68026	aaaaaaaaaaa8aaa	af94496800a32656
51	0000000000001000	ce332329248f3228	5555555555554555	f24c7444edf1c394	aaaaaaaaaaabaaa	c55d7544a1eae274
52	0000000000000800	8405d1abe24fb942	5555555555555 d 55	6be457abc511e87c	aaaaaaaaaaa2aa	9ba49db251748896
53	0000000000000400	e643d78090ca4207	5555555555555155	6136fefebb0c8118	aaaaaaaaaaaaeaa	3d19267de9c12e7b
54	0000000000000200	48221b9937748a23	5555555555555755	d23a8dfe39c98883	aаaаааааааааа8аa	5ce84637532650c8
55	0000000000000100	dd7c0bbd61fafd54	5555555555555455	afe2e34f009924e2	aaaaaaaaaaaabaa	d43941ab72932bb0
56	0000000000000080	2fbc291a570db5c4	55555555555555 d 5	Oadcf552ec1754c6	aaaaaaaaaaaaa2a	816c454ba7894865
57	0000000000000040	e07c30d7e4e26e12	5555555555555515	c06e80c5238135bb	aаааааааааааааеа	74bc744f10f63889
58	0000000000000020	0953e2258e8e90a1	5555555555555575	0912754e7c42f637	aaaaaaaaaaaaa8a	3d2565d9bf62cdbd

ROUND	INPUTBLOCK 1	CIPHERTEXT1	INPUTBLOCK 2	CIPHERTEXT2	INPUTBLOCK 3	CIPHERTEXT3
59	0000000000000010	$5 \mathrm{~b} 711 \mathrm{bc} 4 \mathrm{ceebf2ee}$	5555555555555545	b4f82967c658adb8	aaaaaaaaaaaaaaba	a2e13c5701a60444
60	0000000000000008	cc083fle6d9e85f6	555555555555555 d	006 fa 12 a 796 ac 4 d 3	aaaaaaaaaaaaaaa2	cbe2873fd6f63048
61	0000000000000004	d2fd8867d50d2dfe	5555555555555551	1 a 4 a 364616460 d 44	aaaaaaaaaaaaaaae	cc6adcef1be975ef
62	0000000000000002	06e7ea22ce92708f	5555555555555557	f307b5bcd44f3d8d	aaaaaaaaaaaaaaa8	991d770b2bf051dc
63	0000000000000001	$166 \mathrm{~b} 40 \mathrm{~b} 44 \mathrm{aba} 4 \mathrm{bd6}$	5555555555555554	9cb1c3932c005c49	aaaaaaaaaaaaaab	17d8e9c374d14494

Table A. 6 Resulting Ciphertext from the Inverse Permutation Known Answer Test for TCBC-I Mode of Operation (Encryption Process)
$($ NOTE -- KEY1 $=$ KEY2 $=$ KEY3 $=0101010101010101$
IV1 $=0000000000000000$
IV2 $=5555555555555555$
IV3 = aa aa aa aa aa aa aa aa)

ROUND	PLAINTEXT1	CIPHERTEXT1	PLAINTEXT2	CIPHERTEXT2	PLAINTEXT3	CIPHERTEXT3
0	95f8a5e5dd31d900	8000000000000000	f7552ab6cb21e2bc	713d058fe58a43f7	5a48d3de869557fd	e4999d5c3cceee44
1	dd7f121ca5015619	4000000000000000	e0c2af1ebd89a262	0ac760c01e5927ef	f15ee2019a5b547c	accd15b5dde0b5c2
2	2e8653104f3834ea	2000000000000000	05b865a1e49ed109	363130ca94da9d8a	3bee595ef860316a	69732f3dbb5652b1
3	4bd388ff6cd81d4f	1000000000000000	b447313fc704d321	1e14d9109bc1f46c	f6089ca9b722765c	ace935a115450a05
4	20b9e767b2fb1456	0800000000000000	c39193d42381b313	6a46ef972da6a833	af15a8e9b2c14de5	c1b2f69f9a21090d
5	55579380 d 77138 ef	0400000000000000	6a2afdae188494b8	330aec7886295181	45089186180bd591	a8f987e6d0d3af25
6	6cc5defaaf04512f	0200000000000000	1359f4d663a3209c	e518b154c8b8c8a6	280d3ae3a00cfbc9	87f0fbcb6b40af68
7	0d9f279ba5d87260	0100000000000000	4a035e6a81d1314b	8dec119b560a53d0	d27eb94e56c3172a	6aa899298c76715b
8	d9031b0271bd5a0a	0080000000000000	4334b5fe1b7f5320	d8807ced29f8f8d1	b0555ab990b7e95c	7f17a4e7532b04f9
9	424250b37c3dd951	0040000000000000	f41a29e0d31107b4	dbe8eba35e2a295b	f54f2bd8e2eb2bc6	5c899d0cf0f8a135
10	b8061b7ecd9a21e5	0020000000000000	c8eb2e340855325b	fa5b70d1b836e88d	d51175259c607fb4	726616043a1c0107
11	f15d0f286b65bd28	0010000000000000	b75847a2f3f2458a	4be2d4ffa6f22133	72ea3aadb569af43	ba0432be3b5bb6f8
12	add0cc8d6e5deba1	0008000000000000	be433af4c5ae0f97	b85a5c395b3a5885	9b003151e8602b7d	e40807ea13dd109e
13	e6d5f82752ad63d1	0004000000000000	f68101d125e2e284	9f65cff48d26c258	fc1463bb9bba9e11	7851707ef934aa75
14	ecbfe3bd3f591a5e	0002000000000000	fa510732fa871094	40e8813c718539ac	65f94c59c59b06e1	d51aab52a337dc8d
15	f356834379d165cd	0001000000000000	458d97a8b6ebd0d7	289a7729f22d7703	fbcfc086f8111572	266e7b0862cf5fc2
16	2b9f982f20037fa9	0000800000000000	f4169ca3fc6799ed	a11b556e8c1b26c5	68c9e70b9de8db79	aedab274b2ef15c9
17	889de068a16f0be6	0000400000000000	f47b9f01a5ee74e9	3683a86916c7b11d	63fc8ec1421399b8	80fbb2539dd96d8f
18	e19e275d846a1298	0000200000000000	ee26a403caca387d	9f073f4f068f3d0e	3f1d10e9a1a44a92	498437929c6ccf59
19	329a8ed523d71aec	0000100000000000	af7e5ad1d9f4ecf8	07712f196c02eb9b	e3f663de44003f9b	c4ebb01e305e41e2
20	e7fce22557d23c97	0000080000000000	bb04e854f99f6352	93f4126615626c01	bc2452fd13e00dcc	82fb4a9ce4c92818
21	12a9f5817ff2d65d	0000040000000000	01f57b1e69290d90	b6958170aba384c9	4432a11e1c320e7a	$91239239 \mathrm{e} 22 \mathrm{f0280}$
22	a484c3ad38dc9c19	0000020000000000	8ae9dee849b46527	3bb724cf5e35707d	a1e9e67f13f932b3	cc30662b51d40c1a
23	fbe00a8a1ef8ad72	0000010000000000	cb706efba6b5110e	9fe1afb876cdb756	6fd1d0793clb7af2	8e67cf5371a467a2
24	750 d 079407521363	0000008000000000	b8b27d1286bdbb26	1db03e2b95785d8a	3d2c39f9d26b589e	6e79366486097eba

ROUND	PLAINTEXT1	CIPHERTEXT1	PLAINTEXT2	CIPHERTEXT2	PLAINTEXT3	CIPHERTEXT3
25	64feed9c724c2faf	0000004000000000	9862c9d770558095	ea4e26144ada8e2b	e3a7abc88132ad7d	ce2971055091a1af
26	f02b263b328e2b60	0000002000000000	a213c5c56fdca139	97255bd98b5ed9b3	08cd945738a222c8	252e33166953cd68
27	9d64555a9a10b852	0000001000000000	a3bebc0e23ab87f2	85a52d6656cf13be	568fa34d2fc7225e	39a971317391242b
28	d106ff0bed5255d7	0000000800000000	c32c19229d84e2b4	6965b2633fbe37a8	3771887d7266b49d	d95a7aa0bec4fa7a
29	e1652c6b138c64a5	0000000400000000	e628ceae5cb3bb34	0e8317ae44e3caa0	edd6029a6b80a442	4dfdcc7a4279b2c0
30	e428581186ec8f46	0000000200000000	5924454953ad5732	567efb50dc99f5dc	0313da097aec4a43	96bb89c941631bed
31	aeb5f5ede22d1a36	0000000100000000	7cc987f5fb33b813	46814855930b3a3f	91f5b30f015b4a54	1c3ba8fbadab9a22
32	e943d7568aec0c5c	0000000080000000	88e3dd1448c4e0ff	a77142eabd2bd877	1e60759f038beec1	8fc77798b1692ab2
33	df98c8276f54b04b	0000000040000000	a49d286e5dfc6143	76395f51bdf699db	97061699383bbfe0	ace5681dfba69ceb
34	b160e4680f6c696f	0000000020000000	a5206a311e9c2515	c3e20437ad6c32b7	311f3c96e071f173	782058 f 728 c 21174
35	fa0752b07d9c4ab8	0000000010000000	b6e4686a8b957cf2	34cfbfca8df5fb9d	1a6849edcb701b07	fc14dafe9d171db5
36	ca3a2b036dbc8502	0000000008000000	af1200418fd37fdd	b372320762d438f8	fa5b2fa26d03558b	339189931ada4474
37	5e0905517bb59bcf	0000000004000000	487deccf0fde5b88	882402b6dec6675f	bcaa0b7b7b3464c5	c6d1f875363bf7ea
38	814eeb3b91d90726	0000000002000000	456a1865905ed57d	69e1758b520187d4	3d245b501c6abb74	31097d931da2e7bd
39	4d49db1532919c9f	0000000001000000	3e2601fa20895e62	ab8232a31d78e0fc	62133d9330e2e86b	Obff0085bb36e9b0
40	25eb5fc3f8cf0621	0000000000800000	58da89972266a7e3	aeed06b9f51ce37a	5d7d6bd225890b4d	5d09a28ee99cb585
41	ab6a20c0620d1c6f	0000000000400000	feaca17e5dd05c87	96dc5bd6e0b10d83	db36baba70c3b9af	46d9a629a0616379
42	$79 \mathrm{e} 90 \mathrm{dbc} 98 \mathrm{f92} 9 \mathrm{cca}$	0000000000200000	88249b73e99c5ac0	55a4cdc28ecf0541	a2f5ea90c2179ab4	ab239da3e3fab21b
43	866ecedd8072bb0e	0000000000100000	5f8add8784cc3174	7349bfc7f6461210	70470a07cb34e109	9331573af5067b09
44	8b54536f2f3e64a8	0000000000080000	cd8dc942ae2bb175	90b4544c9e6ad23b	659610094ab3824e	3133eeddd4f2ffec
45	ea51d3975595b86b	0000000000040000	cf8442863e68e644	2d7e77de47d0dad4	26e6223634c857a3	408e7d58ba623208
46	caffc6ac4542de31	0000000000020000	16952dc89c0acd65	b87887b6dddaab6f	ddd0a647be96041f	0e5b54a5a9cfbed1
47	8dd45a2ddf90796c	0000000000010000	8a4fca2b00c49807	8fdec 1977d446e54	363219d8cec5a9f3	b875b2ffa6fea146
48	1029d55e880ec2d0	0000000000008000	b40225aea121c8d3	aedc1e02bd099571	bb5710f9dc8dde46	1a190ba501176f51
49	5d86cb23639dbea9	0000000000004000	711c066c13222f1c	1404bcbe41ce6aa1	ae527ed311a25ea2	863541107 db 40094
50	1d1ca853ae7c0c5f	0000000000002000	4fb69c832db68026	83804ddd1b5cd4fd	af94496800a32656	0d3834749def9e7a
51	ce332329248f3228	0000000000001000	f24c7444edf1c394	5f54383a55d6198a	c55d7544a1 eae274	b601d210b21d541b
52	8405d1abe24fb942	0000000000000800	6be457abc511e87c	f1c2172a084f656f	9ba49db251748896	50d294abb12450bb
53	e643d78090ca4207	0000000000000400	6136fefebb0c8118	88b53f4066285776	3d19267de9c12e7b	010a1b96b9017a94
54	48221b9937748a23	0000000000000200	d23a8dfe39c98883	4dc3b1bc755eb684	5ce84637532650c8	15acb37fde2a095a
55	dd7c0bbd61fafd54	0000000000000100	afe2e34f009924e2	45c93fbf9ea29104	d43941ab72932bb0	7bd2597948ce5bc8
56	2fbc291a570db5c4	0000000000000080	Oadcf552ec1754c6	e5c336ae5360d967	816c454ba7894865	b3f30f939f9bc4db
57	e07c30d7e4e26e12	0000000000000040	c06e80c5238135bb	31c1c1914e9d7278	74bc $744 \mathrm{f} 10 \mathrm{f63889}$	d30cbd5808d8e0ef

| ROUND | PLAINTEXT1 | CIPHERTEXT1 | PLAINTEXT2 | CIPHERTEXT2 | PLAINTEXT3 | CIPHERTEXT3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 58 | 0953e2258e8e90a1 | 0000000000000020 | 0912754e7c42f637 | ca1dad0fa1978258 | 3d2565d9bf62cdbd | b30b208b6ccecada |
| 59 | 5b711bc4ceebf2ee | 0000000000000010 | b4f82967c658adb8 | afd29a3fba18602a | a2e13c5701a60444 | 027d03f04016c3c2 |
| 60 | cc083f1e6d9e85f6 | 0000000000000008 | 006fa12a796ac4d3 | c291dff5ec01e8b3 | cbe2873fd6f63048 | c0950b7f3c1bfaca |
| 61 | d2fd8867d50d2dfe | 0000000000000004 | 1a4a364616460d44 | 6491ba623149f3d0 | cc6adcef1be975ef | 2e475e2153d1c64a |
| 62 | 06e7ea22ce92708f | 0000000000000002 | f307b5bcd44f3d8d | 87c6963b33be0353 | 991d770b2bf051dc | f8f7ded629f3fc48 |
| 63 | 166b40b44aba4bd6 | 0000000000000001 | 9cb1c3932c005c49 | 4fce2baa2cd647d3 | 17d8e9c374d14494 | 776bd1e53ef1d7d6 |

Table A. 7 Resulting Ciphertext from the Initial Permutation Known Answer Test for TCBC-I Mode of Operation

(Decryption Process)

$$
\begin{gathered}
(\text { NOTE -- KEY1 }=\text { KEY2 = KEY3 } 0101010101010101 \\
\text { IV1 }=0000000000000000 \\
\text { IV2 }=5555555555555555 \\
\text { IV3 = aa aa aa aa aa aa aa aa) }
\end{gathered}
$$

ROUND	CIPHERTEXTS	PLAINTEXT1	PLAINTEXT2	PLAINTEXT3
0	8000000000000000	95f8a5e5dd31d900	c0adf0b088648c55	3f520f4f779b73aa
1	4000000000000000	dd7f121ca5015619	882a4749f054034c	77d5b8b60fabfcb3
2	2000000000000000	2e8653104f3834ea	7bd306451a6d61bf	842cf9bae5929e40
3	1000000000000000	4bd388ff6cd81d4f	1e86ddaa398d481a	e1792255c672b7e5
4	0800000000000000	20b9e767b2fb1456	75 ecb 232 e 7 ae 4103	8a134dcd1851befc
5	0400000000000000	55579380 d 77138 ef	0002c6d582246dba	fffd392a7ddb9245
6	0200000000000000	6cc5defaaf04512f	39908baffa51047a	c66f745005aefb85
7	0100000000000000	0d9f279ba5d87260	58ca72cef08d2735	a7358d310f72d8ca
8	0080000000000000	d9031b0271bd5a0a	8c564e5724e80f5f	73a9b1a8db17f0a0
9	0040000000000000	424250b37c3dd951	171705 e 629688 c 04	e8e8fa19d69773fb
10	0020000000000000	b8061b7ecd9a21e5	ed534e2b98cf74b0	12acb1d467308b4f
11	0010000000000000	f15d0f286b65bd28	a4085a7d3e30e87d	5bf7a582c1cf1782
12	0008000000000000	add0cc8d6e5deba1	f88599d83b08bef4	077a6627c4f7410b
13	0004000000000000	e6d5f82752ad63d1	b380ad7207f83684	4c7f528df807c97b
14	0002000000000000	ecbfe3bd3f591a5e	b9eab6e86a0c4f0b	4615491795f3b0f4
15	0001000000000000	f356834379d165cd	a603d6162c843098	59fc29e9d37bcf67
16	0000800000000000	2b9f982f20037fa9	7ecacd7a75562afc	813532858aa9d503
17	0000400000000000	889de068a16f0be6	ddc8b53df43a5eb3	22374ac20bc5a14c
18	0000200000000000	e19e275d846a1298	b4cb7208d13f47cd	4b348df72ec0b832
19	0000100000000000	329a8ed523d71aec	67cfdb8076824fb9	9830247f897db046
20	0000080000000000	e7fce22557d23c97	b2a9b770028769c2	4d56488ffd78963d
21	0000040000000000	12a9f5817ff2d65d	47fca0d42aa78308	b8035f2bd5587cf7
22	0000020000000000	a484c3ad38dc9c19	f1d196f86d89c94c	0e2e6907927636b3
23	0000010000000000	fbe00a8a1ef8ad72	aeb55fdf4badf827	514aa020b45207d8

ROUND	CIPHERTEXTS	PLAINTEXT1	PLAINTEXT2	PLAINTEXT3
24	0000008000000000	750d079407521363	205852c152074636	dfa7ad3eadf8b9c9
25	0000004000000000	64feed9c724c2faf	31abb8c927197afa	ce544736d8e68505
26	0000002000000000	f02b263b328e2b60	a57e736e67db7e35	5a818c91982481ca
27	0000001000000000	9d64555a9a10b852	c831000fcf45ed07	37cefff030ba12f8
28	0000000800000000	d106ff0bed5255d7	8453aa5eb8070082	7bac55a147f8ff7d
29	0000000400000000	e1652c6b138c64a5	b430793e46d931f0	4bcf86c1b926ce0f
30	0000000200000000	e428581186ec8f46	b17d0d44d3b9da13	4e82f2bb2c4625ec
31	0000000100000000	aeb5f5ede22d1a36	fbe0a0b8b7784f63	041f5f474887b09c
32	0000000080000000	e943d7568aec0c5c	bc168203dfb95909	43e97dfc2046a6f6
33	0000000040000000	df98c8276f54b04b	8acd9d723a01e51e	7532628dc5fe1ae1
34	0000000020000000	b160e4680f6c696f	e435b13d5a393c3a	1bca4ec2a5c6c3c5
35	0000000010000000	fa0752b07d9c4ab8	af5207e528c91fed	50adf81ad736e012
36	0000000008000000	ca3a2b036dbc8502	9f6f7e5638e9d057	609081a9c7162fa8
37	0000000004000000	5e0905517bb59bcf	0b5c50042ee0ce9a	f4a3affbd11f3165
38	0000000002000000	814eeb3b91d90726	d41bbe6ec48c5273	2be441913b73ad8c
39	0000000001000000	4d49db1532919c9f	181c8e4067c4c9ca	e7e371bf983b3635
40	0000000000800000	25eb5fc3f8cf0621	70be0a96ad9a5374	8f41f5695265ac8b
41	0000000000400000	ab6a20c0620d1c6f	fe3f75953758493a	01c08a6ac8a7b6c5
42	0000000000200000	79e90dbc98f92cca	2cbc58e9cdac799f	d343a71632538660
43	0000000000100000	866ecedd8072bb0e	d33b9b88d527ee5b	2cc464772ad811a4
44	0000000000080000	8b54536f2f3e64a8	de01063a7a6b31fd	21fef9c58594ce02
45	0000000000040000	ea51d3975595b86b	bf0486c200c0ed3e	40fb793dff3f12c1
46	0000000000020000	caffc6ac4542de31	9faa93f910178b64	60556c06efe8749b
47	0000000000010000	8dd45a2ddf90796c	d8810f788ac52c39	277ef087753ad3c6
48	0000000000008000	1029d55e880ec2d0	457c800bdd5b9785	ba837ff422a4687a
49	0000000000004000	5d86cb23639dbea9	08d39e7636c8ebfc	f72c6189c9371403
50	0000000000002000	1d1ca853ae7c0c5f	4849fd06fb29590a	b7b602f904d6a6f5
51	0000000000001000	ce332329248f3228	9b66767c71da677d	649989838 e 259882
52	0000000000000800	8405d1abe24fb942	d15084feb71aec17	2eaf7b0148e513e8
53	0000000000000400	e643d78090ca4207	b31682d5c59f1752	4ce97d2a3a60e8ad
54	0000000000000200	48221b9937748a23	1d774ecc6221df76	e288b1339dde2089
55	0000000000000100	dd7c0bbd61fafd54	88295ee834afa801	77d6a117cb5057fe
56	0000000000000080	2fbc291a570db5c4	7ae97c4f0258e091	851683b0fda71f6e

ROUND	CIPHERTEXTS	PLAINTEXT1	PLAINTEXT2	PLAINTEXT3
57	0000000000000040	e07c30d7e4e26e12	b5296582b1b73b47	4ad69a7d4e48c4b8
58	0000000000000020	0953 e 2258 e 8 e 90 a 1	5c06b770dbdbc5f4	a3f9488f24243a0b
59	00000000000000010	5b711bc4ceebf2ee	0e244e919bbea7bb	f1dbb16e64415844
60	0000000000000008	cc083f1e6d9e85f6	995d6a4b38cbd0a3	66a295b4c7342f5c
61	0000000000000004	d2fd8867d50d2dfe	87a8dd32805878ab	785722cd7fa78754
62	0000000000000002	06e7ea2ce92708f	53b2bf779bc725da	ac4d40886438da25
63	0000000000000001	166b40b44aba4bd6	433e15e11fef1e83	bcc1ea1ee010e17c

Table A. 8 Values To Be Used for the Substitution Table Known Answer Test

for TCBC-I Mode of Operation

$$
\begin{aligned}
(\text { NOTE -- IV1 } & =0000000000000000 \\
\text { IV2 } & =5555555555555555 \\
\text { IV3 } & =\text { aa aa aa aa aa aa aa aa) }
\end{aligned}
$$

ROUND	KEY	PLAINTEXTS	CIPHERTEXT1	CIPHERTEXT2	CIPHERTEXT3
0	7ca110454a1a6e57	01a1d6d039776742	690f5b0d9a26939b	89202f224f1f2261	585a1e8d89705d10
1	0131d9619dc1376e	5cd54ca83def57da	7a389d10354bd271	6dda0de99d3c86b9	99985b67b598bd25
2	07a1133e4a0b2686	0248d43806f67172	868ebb51cab4599a	8200616c589bc7aa	d2ff67461377fbb5
3	3849674c2602319e	51454b582ddf440a	7178876e01f19b2a	64757292febccad1	93bd8beeea2310fc
4	04b915ba43feb5b6	42fd443059577fa2	af37fb421f8c4095	204fc6123992d4e9	6bfb4df0569cebce
5	0113b970fd34f2ce	059b5e0851cf143a	86a560f10ec6d85b	1fa86f6f735603a3	Obe3558738c6d7c3
6	0170f175468fb5e6	0756d8e0774761d2	0cd3da020021dc09	65e05d62b35aa365	3bfc9a3f034da292
7	43297fad38e373fe	762514b829bf486a	ea676b2cb7db2b7a	95c0f9e595aec2ff	ea9ab3585f166586
8	07a7137045da2a16	3bdd119049372802	dfd64a815caf1a0f	127359c20e10e25a	953a36ff13a08906
9	04689104c2fd3b2f	26955f6835af609a	5c513c9c4886c088	b089d90f84ef0c4c	08bd60f6f80d6fad
10	37d06bb516cb7546	164d5e404f275232	0a2aeeae3ff4ab77	32bbdd67d4e66dd6	83a30606fc78d740
11	1f08260d1ac2465e	6b056e18759f5cca	ef1bf03e5dfa575a	b4873081fdebc81d	6445799c9b701694
12	$584023641 \mathrm{aba6176}$	004bd6ef09176062	88bf0db6d70dee56	988fe2e8e1755e78	1e1fdd8660a75bb5
13	025816164629b007	480d39006ee762f2	a1f9915541020b56	ee6c0febb212b218	60bae59c51767394
14	49793ebc79b3258f	437540c8698f3cfa	6fbf1cafcffd0556	c03adc2b6aa85b5b	826ec7e02f486885
15	4fb05e1515ab73a7	072d43a077075292	2f22e49bab7calac	096a4136e0f65f76	9e30377b7a39d5d3
16	49e95d6d4ca229bf	02fe55778117f12a	5a6b612cc26cce4a	bf4da6aa59ed5751	64b77306321a932c
17	018310dc409b26d6	1d9d5c5018f728c2	5f4c038ed12b2e41	aab93390e13d3bb3	3b17daff733fcfb0
18	1c587f1c13924fef	305532286d6f295a	63fac0d034d9f793	db3c4106c5db5648	7f38215d73b0ee62

Table A. 9 Resulting Ciphertext from the Variable TEXT Known Answer Test
for TCFB-P and TOFB-I Modes of Operation
$\begin{aligned} \text { (NOTE }-- & \text { TEXT }=0000000000000000 \\ & \text { IV1 }=0000000000000000 \\ & \text { IV2 }=5555555555555555 \\ & \text { IV3 }=\text { aa aa aa aa aa aa aa aa) }\end{aligned}$

RND	PLAINTEXT1 \oplus IV1	CIPHERTEXT1	PLAINTEXT2 \oplus IV2	CIPHERTEXT2	PLAINTEXT3 \oplus IV3	CIPHERTEXT3
0	8000000000000000	95f8a5e5dd31d900	d555555555555555	f7552ab6cb21e2bc	2aaaaaaaaaaaaaa	5a48d3de869557fd
1	4000000000000000	dd7f121ca5015619	9555555555555555	0c783d97d0dbf51a	eaaaaaaaaaaaaaa	f15ee2019a5b547c
2	2000000000000000	2e8653104f3834ea	7555555555555555	05b865a1e49ed109	caaaaaaaaaaaaa	f925b68465b6078c
3	1000000000000000	4bd388ff6cd81d4f	6555555555555555	9e51152dbce90b02	baaaaaaaaaaaaaa	f6089ca9b722765c
4	0800000000000000	20b9e767b2fb1456	5d55555555555555	c39193d42381b313	b2aaaaaaaaaaaaa	4f1b8036d441af95
5	0400000000000000	55579380d77138ef	5955555555555555	e293394891554b68	aeaaaaaaaaaaaaa	45089186180bd591
6	0200000000000000	6cc5defaaf04512f	5755555555555555	1359f4d663a3209c	acaaaaaaaaaaaa	d86dd807085fa8e6
7	0100000000000000	0d9f279ba5d87260	5655555555555555	0d0f03e8f8594a66	abaaaaaaaaaaaaa	d27eb94e56c3172a
8	0080000000000000	d9031b0271bd5a0a	55d5555555555555	4334b5fe1b7f5320	ab2aaaaaaaaaaa	d6ad42065e31bdb1
9	0040000000000000	424250b37c3dd951	5595555555555555	9484c1c29b62c41e	aаеаааааааааааа	f54f2bd8e2eb2bc6
10	0020000000000000	b8061b7ecd9a21e5	5575555555555555	c8eb2e340855325b	aасааааааааааааа	6cf8932328c7e49b

RND	PLAINTEXT1 \oplus IV1	CIPHERTEXT1	PLAINTEXT2 \oplus IV2	CIPHERTEXT2	PLAINTEXT3 \oplus IV3	CIPHERTEXT3
11	0010000000000000	f15d0f286b65bd28	5565555555555555	e88a676ef848e6d1	aabaaaaaaaaaaaa	72ea3aadb569af43
12	0008000000000000	add0cc8d6e5deba1	555d555555555555	be433af4c5ae0f97	aab2aaaaaaaaaaa	0d71ecadd7a49fec
13	0004000000000000	e6d5f82752ad63d1	5559555555555555	9e32639bb9d27cc7	aaaeaaaaaaaaaaa	fc1463bb9bba9e11
14	0002000000000000	ecbfe3bd3f591a5e	5557555555555555	fa510732fa871094	aaacaaaaaaaaaaa	31568f2e0ac0d693
15	0001000000000000	f356834379d165cd	5556555555555555	9f1b31571ed41078	aaabaaaaaaaaaaa	fbcfc086f8111572
16	0000800000000000	2b9f982f20037fa9	5555d55555555555	f4169ca3fc6799ed	aaab2aaaaaaaaaa	d67ca5071769cafe
17	0000400000000000	889de068a16f0be6	5555955555555555	e9a738ac85e2ca4b	aаааеааааааааааа	63fc8ec 1421399b8
18	0000200000000000	e19e275d846a1298	5555755555555555	ee26a403caca387d	aaaacaaaaaaaaaa	5d84b7acabb63bfb
19	0000100000000000	329a8ed523d71aec	5555655555555555	0b3f88ef87d85953	aaaabaaaaaaaaaa	e3f663de44003f9b
20	0000080000000000	e7fce22557d23c97	55555d5555555555	bb04e854f99f6352	aaaab2aaaaaaaaa	4e5892f230b6d6d1
21	0000040000000000	12a9f5817ff2d65d	5555595555555555	f0881280455dec63	aааааеааааааааа	4432a11e1c320e7a
22	0000020000000000	a484c3ad38dc9c19	5555575555555555	8ae9dee849b46527	aаааасааааааааа	02ce21a9c83ba4d6
23	0000010000000000	fbe00a8a1ef8ad72	5555565555555555	74b7d252cae558fb	aaaaabaaaaaaaaa	6fd1d0793c1b7af2
24	0000008000000000	750d079407521363	555555d555555555	b8b27d1286bdbb26	aaaaab2aaaaaaaa	fc286fa362d8c93c
25	0000004000000000	64feed9c724c2faf	5555559555555555	4e3dd222e292dd96	ааааааеаааааааа	e3a7abc88132ad7d
26	0000002000000000	f02b263b328e2b60	5555557555555555	a213c5c56fdca139	aaaaaacaaaaaaaa	8868d3114021a027

RND	PLAINTEXT1 \oplus IV1	CIPHERTEXT1	PLAINTEXT2 \oplus IV2	CIPHERTEXT2	PLAINTEXT3 \oplus IV3	CIPHERTEXT3
27	0000001000000000	9d64555a9a10b852	5555556555555555	05df49a56a345cf9	aaaaaabaaaaaaaa	568fa34d2fc7225e
28	0000000800000000	d106ff0bed5255d7	5555555d55555555	c32c19229d84e2b4	aaaaaab2aaaaaaa	1f81cbb9403ecc59
29	0000000400000000	e1652c6b138c64a5	5555555955555555	89c6e06ce6164d84	aaaaaaaeaaaaaaa	edd6029a6b80a442
30	0000000200000000	e428581186ec8f46	5555555755555555	5924454953 ad 5732	ааааааасаааааааа	ef90911c0f9a66f3
31	0000000100000000	aeb5f5ede22d1a36	5555555655555555	7a3e15c0953b08cc	aaaaaaabaaaaaaa	91f5b30f015b4a54
32	0000000080000000	e943d7568aec0c5c	55555555d5555555	88e3dd1448c4e0ff	aaaaaab2aaaaaa	a5aec2896cff08e5
33	0000000040000000	df98c8276f54b04b	5555555595555555	9f55ebaca42cb845	aаaаааааеаааааа	97061699383bbfe0
34	0000000020000000	b160e4680f6c696f	5555555575555555	a5206a311e9c2515	aaaaaaaacaaaaaa	08e218f2cb1ede18
35	0000000010000000	fa0752b07d9c4ab8	5555555565555555	e944c64af09dfa84	aaaaaaabaaaaaaa	1a6849edcb701b07
36	0000000008000000	ca3a2b036dbc8502	555555555 d 555555	af1200418fd37fdd	aaaaaaab2aaaaa	85480c507233c006
37	0000000004000000	5e0905517bb59bcf	5555555559555555	574a377b5a150353	aааааааааеааааа	bcaa0b7b7b3464c5
38	0000000002000000	814eeb3b91d90726	5555555557555555	456a1865905ed57d	ааааааааасаааааа	0439f36972dc531f
39	0000000001000000	4d49db1532919c9f	5555555556555555	8427c42d027a34d0	aaaaaaaabaaaaaa	62133d9330e2e86b
40	0000000000800000	25eb5fc3f8cf0621	5555555555 d 55555	58da89972266a7e3	aaaaaaaab2aaaa	f9c2472742b5f9e8
41	0000000000400000	ab6a20c0620d1c6f	5555555555955555	1ed858bcbc934c17	aааааааааааеааааа	db36baba70c3b9af
42	0000000000200000	79e90dbc98f92cca	5555555555755555	88249b73e99c5ac0	aаaааааааасааааа	0758b13e912d53cb

RND	PLAINTEXT1 \oplus IV1	CIPHERTEXT1	PLAINTEXT2 \oplus IV2	CIPHERTEXT2	PLAINTEXT3 \oplus IV3	CIPHERTEXT3
43	0000000000100000	866ecedd8072bb0e	5555555555655555	69314212c7a9d6b1	aaaaaaaaabaaaaa	70470a07cb34e109
44	0000000000080000	8b54536f2f3e64a8	55555555555d5555	cd8dc942ae2bb175	aaaaaaaaab2aaaa	9c6ade3a9e772c7c
45	0000000000040000	ea51d3975595b86b	5555555555595555	4c0a052894ed7436	aaaaaaaaaaeaaaa	26e6223634c857a3
46	0000000000020000	caffc6ac4542de31	5555555555575555	16952dc89c0acd65	aаааааааааасаааа	72dfd337fe183a6d
47	0000000000010000	8dd45a2ddf90796c	5555555555565555	92ef4c4350711745	aaaaaaaaaabaaaa	363219d8cec5a9f3
48	0000000000008000	1029d55e880ec2d0	555555555555 d 555	b40225aea121c8d3	aaaaaaaaaab2aaa	4bc89c1804bcae82
49	0000000000004000	5d86cb23639dbea9	5555555555559555	a9eab121edde0ca7	aаaаааааааааеаа	ae527ed311a25ea2
50	0000000000002000	1d1ca853ae7c0c5f	5555555555557555	4fb69c832db68026	aaaaaaaaaaacaaa	a1584c1024f61f3d
51	0000000000001000	ce332329248f3228	5555555555556555	761b3d1ff06c513e	aaaaaaaaaaabaaa	c55d7544a1eae274
52	0000000000000800	8405d1 abe24fb942	5555555555555 d 55	6be457abc511e87c	aaaaaaaaaaab2aa	aef861c69fd34489
53	0000000000000400	e643d78090ca4207	5555555555555955	ebb5a1887b1f6e3a	aааааааааааааеаа	3d19267de9c12e7b
54	0000000000000200	48221b9937748a23	5555555555555755	d23a8dfe39c98883	aаааааааааааасаа	ade513b3ed994800
55	0000000000000100	dd7c0bbd61fafd54	5555555555555655	9f986bb8f7e6fa46	aaaaaaaaaaaabaa	d43941ab72932bb0
56	0000000000000080	2fbc291a570db5c4	55555555555555d5	Oadcf552ec1754c6	aaaaaaaaaaaab2a	7f7352dfade13e13
57	0000000000000040	e07c30d7e4e26e12	5555555555555595	6c25b868caf1f7d3	aааааааааааааеа	74bc744f10f63889
58	0000000000000020	0953e2258e8e90a1	5555555555555575	0912754e7c42f637	aaaaaaaaaaaaaca	a483f2da4099a136

RND	PLAINTEXT1 \oplus IV1	CIPHERTEXT1	PLAINTEXT2 \oplus IV2	CIPHERTEXT2	PLAINTEXT3 \oplus IV3	CIPHERTEXT3
59	0000000000000010	5b711bc4ceebf2ee	5555555555555565	2fa6a76d9b83e3dd	aaaaaaaaaaaaaba	a2e13c5701a60444
60	0000000000000008	cc083f1e6d9e85f6	555555555555555d	006fa12a796ac4d3	aaaaaaaaaaaaab2	bc10a45ceedb56b3
61	0000000000000004	d2fd8867d50d2dfe	5555555555555559	6a0bd7954b5aa04d	aaaaaaaaaaaaae	cc6adcef1be975ef
62	0000000000000002	06e7ea22ce92708f	5555555555555557	f307b5bcd44f3d8d	aаaаааааааааааас	$3 \mathrm{dc} 004 \mathrm{f} 9 \mathrm{cd4a9c} 22$
63	0000000000000001	166b40b44aba4bd6	5555555555555556	009e8232891c8a36	aaaaaaaaaaaaaab	17d8e9c374d14494

Table A. 10 Values to be Used for the Substitution Table Known Answer Test
for TCFB-P and TOFB-I Modes of Operation
(NOTE -- TEXT $=0000000000000000$)

RND	KEY	IV1	CIPHERTEXT2	IV2	CIPHERTEXT2	IV3	CIPHERTEXT3
0	7ca110454a1a6e57	01a1d6d039776742	690f5b0d9a26939b	56f72c258eccbc97	97fc1b9381f05ffa	ac4c817ae42211ec	e90a658ca212b240
1	0131d9619dc1376e	5cd54ca83def57da	7a389d10354bd271	b22aa1fd9344ad2f	1697f74514a33238	077ff752e89a0284	21329d25683b4606
2	07a1133e4a0b2686	0248d43806f67172	868ebb51cab4599a	579e298d5c4bc6c7	3c33dc00289664d0	acf37ee2b1a11c1c	66477e326b77dd91
3	3849674c2602319e	51454b582ddf440a	7178876e01f19b2a	a69aa0ad8334995f	941fcf0e43a965af	fbeff602d889eeb4	8d71d3da699fa6f5
4	04b915ba43feb5b6	42fd443059577fa2	af37fb421f8c4095	98529985aeacd4f7	1e327e778501022a	eda7eedb04022a4c	9e547f92a9ad358c
5	0113b970fd34f2ce	059b5e0851cf143a	86a560f10ec6d85b	5af0b35da724698f	637038eaaa7d167e	b04608b2fc79bee4	6f975aa305eb7548
6	0170f175468fb5e6	0756d8e0774761d2	0cd3da020021dc09	5cac2e35cc9cb727	1c7fe0ddc80d3f6e	b201838b21f20c7c	cad8716fc1176297
7	43297fad38e373fe	762514b829bf486a	ea676b2cb7db2b7a	cb7a6a0d7f149dbf	4b36062823e8190f	20cfbf62d469f314	664e8d98d3986cfe
8	07a7137045da2a16	3bdd119049372802	dfd64a815caf1a0f	913266e59e8c7d57	1ff289bc8e07c5f3	e687bc3af3e1d2ac	948ab876125e7c7f
9	04689104c2fd3b2f	26955f6835af609a	5c513c9c4886c088	7beab4bd8b04b5ef	19f76ad4a415b1c1	d1400a12e05a0b44	75d6085d1b1e472d
10	37d06bb516cb7546	164d5e404f275232	0a2aeeae3ff4ab77	6ba2b395a47ca787	c78b293dc022c9aa	c0f808eaf9d1fcdc	6ac4da432141aa16
11	1f08260d1ac2465e	6b056e18759f5cca	ef1bf03e5dfa575a	c05ac36dcaf4b21f	5469ad2a9c97bf19	15b018c3204a0774	9983b852b915da86
12	584023641 aba6176	004bd6ef09176062	88bf0db6d70dee56	55a12c445e6cb5b7	77aeb7e9d51577e5	aaf68199b3c20b0c	fb716445f1a43232
13	025816164629b007	480d39006ee762f2	a1f9915541020b56	9d628e55c43cb847	08cdd6072e276e2e	f2b7e3ab19920d9c	fdb44a9e6f4bd7dc

RND	KEY	IV1	CIPHERTEXT2	IV2	CIPHERTEXT2	IV3	CIPHERTEXT3
14	49793ebc79b3258f	437540c8698f3cfa	6fbf1cafcffd0556	98ca961dbee4924f	0aa3768ad4358b6c	ee1feb731439e7a4	68b40c29c2238233
15	4fb05e1515ab73a7	072d43a077075292	2f22e49bab7calac	5c8298f5cc5ca7e7	7fd1411fd6a31497	b1d7ee4b21b1fd3c	dd6359e601656be3
16	49e95d6d4ca229bf	02fe55778117f12a	5a6b612cc26cce4a	5853aaccd66d467f	116a6ae6e1e47270	ada900222bc29bd4	b16f4467a4f95fd0
17	018310dc409b26d6	1d9d5c5018f728c2	5f4c038ed12b2e41	72f2b1a56e4c7e17	de11d7e1c6d5797c	c84806fac3a1d36c	9cb7c0a87fa2bdbe
18	1c587f1c13924fef	305532286d6f295a	63fac0d034d9f793	85aa877dc2c47eaf	9896336cbadada37	daffdcd31819d404	1c5e61a81d05a5ef

Table A. 11 Resulting Ciphertext from the Variable KEY Known Answer Test for TCBC-I, TCFB-P and TOFB-I Modes of Operation
(NOTE -- TEXT1 $=$ TEXT2 $=$ TEXT3 $=0000000000000000$
IV1 $=0000000000000000$
IV2 = 5555555555555555
IV3 = aa aa aa aa aa aa aa aa)

ROUND	KEY	C1/RESULT1	C2/RESULT2	C3/RESULT3
0	8001010101010101	95a8d72813daa94d	b8bc8dbc0b24cfa9	1e08a515c11e0de1
1	4001010101010101	0eec 1487dd8c26d5	badb3425df504209	0608b0c77f0ab511
2	2001010101010101	7ad16ffb79c45926	34069d06536cfaf8	3d090b850910022e
3	1001010101010101	d3746294ca6a6cf3	53edd6c7b2d8663c	19d83418eaf8e3ab
4	0801010101010101	809f5f873c1fd761	17d1d4a8731b3acd	91da457d7e16d6a5
5	0401010101010101	c02faffec989d1fc	51454c54f4ea817e	6a4ec92bc50c9503
6	0201010101010101	4615aa1d33e72f10	8f640c66e3ad6c5f	a185e92b67a45257
7	0180010101010101	2055123350c00858	e09a8dbe2b782986	0b7e13fdbadc96aa
8	0140010101010101	df3b99d6577397c8	6ble20d1be1c25e5	eacef886f5087ce8
9	0120010101010101	31fe17369b5288c9	d7c9ed116a4ca5c3	69c60f1118060221
10	0110010101010101	dfdd3cc64dae1642	bb34b6ec92447bdc	99547b8b947e8c44

ROUND	KEY	C1/RESULT1	C2/RESULT2	C3/RESULT3
11	0108010101010101	178c83ce2b399d94	39ad35b103ea754c	aef4932bb880ffe7
12	0104010101010101	50f636324a9b7f80	502c48c0b6f5da1e	cd7942c2f0db9598
13	0102010101010101	a8468ee3bc18f06d	6da06bc26cd27347	b299efe073df56d0
14	0101800101010101	a2dc9e92fd3cde92	048b509f61329322	57fd7a94bd090076
15	0101400101010101	cac09f797d031287	cf18ef06ff4726dd	364898370f13783a
16	0101200101010101	90ba680b22aeb525	5e68a2a3f420ced2	7021fa3c611c5353
17	0101100101010101	ce7a24f350e280b6	f2241608a9c01443	4ad01e2a4f325e1b
18	0101080101010101	882bff0aa01a0b87	4d5268c568b57e87	d06a7e3c1016a256
19	0101040101010101	25610288924511 c 2	12537c78d5b135f5	af1c2074ea3952f7
20	0101020101010101	c71516c29c75d170	2a447d1d0918e635	643eacd845d0ac81
21	0101018001010101	5199c29a52c9f059	c45e53dbad3642c6	077f60d16feecc6d
22	0101014001010101	c22f0a294a71f29f	86b57a072d1af70c	2add0d3ff6b568ba
23	0101012001010101	ee371483714c02ea	3c6c5d0ad80d7409	0730787152b406bc
24	0101011001010101	a81 fbd448f9e522f	3613b5811324cac7	ae3ef9ebdca26f00
25	0101010801010101	4f644c92e192dfed	50ed144cedb736ac	2abd3b256652632b
26	0101010401010101	1afa9a66a6df92ae	bc5bc5a66a53b929	a2e9fa40e6b6cfca

ROUND	KEY	C1/RESULT1	C2/RESULT2	C3/RESULT3
27	0101010201010101	b3c1cc715cb879d8	5d1f09ffcd80d21b	bd11881fa1f9c189
28	0101010180010101	19d032e64ab0bd8b	a8b79d2e02415d8e	925d1851ab04bafa
29	0101010140010101	3cfaa7a7dc8720dc	932c31352789dff9	4dafea6ad259c035
30	0101010120010101	b7265f7f447ac6f3	2ec8e9923a8a010c	e0f7a70dbdd597b7
31	0101010110010101	9db73b3c0d163f54	f36e475bb9a8fb57	88dad0c28986f116
32	0101010108010101	8181b65babf4a975	73f174b827a22fbf	205fd48356602a2f
33	0101010104010101	93c9b64042eaa240	c76d844d9918627d	ddaba956a4fd22c5
34	0101010102010101	5570530829705592	beff48907877eedd	775f3bbfea9a0637
35	0101010101800101	8638809e878787a0	7829e156fdd34db6	c26ea76714b38596
36	0101010101400101	41b9a79af79ac208	7b2545576a6992d9	46ca820bcf0a462b
37	0101010101200101	7a9be42f2009a892	0b59503dc812b27f	2a5e46fd70852d73
38	0101010101100101	29038d56ba6d2745	07b67fe9359a3026	145ad75857e4b4b3
39	0101010101080101	5495c6abf1e5df51	a82b120e4080136e	99525cafa664a0f9
40	0101010101040101	ae13dbd561488933	e3533571ee3d99eb	d1c679a7a2c4156c
41	0101010101020101	024d1ffa8904e389	eb57f8c58f18b849	e653401e4d004c74
42	0101010101018001	d1399712f99bf02e	505e3b0af188d731	02b8091c05f5e061

ROUND	KEY	C1/RESULT1	C2/RESULT2	C3/RESULT3
43	0101010101014001	14c1d7c1cffec79e	0f38a59e95a70f13	9879d116764dafe3
44	0101010101012001	1de5279dae3bed6f	97108885 fe2018ed	154b6e3c9a2871b1
45	0101010101011001	e941a33f85501303	71147052540af3d8	21397c0ec6a47e75
46	0101010101010801	da99dbbc9a03f379	563df95ec668d933	d11d4e56261716a9
47	0101010101010401	b7fc92f91d8e92e9	c8003e219b996cc7	fb258b1abf89b7c4
48	0101010101010201	ae8e5caa3ca04e85	722 fb 450715 fb 317	c52f5e37f39d1e6f
49	0101010101010180	9cc62df43b6eed74	7edfaaa980158515	e91439e9838dcc9d
50	0101010101010140	d863dbb5c59a91a0	82fb07d5e1d5b100	78c2810a85028047
51	0101010101010120	a1ab2190545b91d7	04f0cbaff1735340	d466ec944a1fe7f7
52	0101010101010110	0875041e64c570f7	70ee1ae9b095db22	2fcd9094c8d397f2
53	0101010101010108	5a594528bebef1cc	004dd0b91a2e7709	80181b831cdc8d61
54	0101010101010104	fcdb3291de21f0c0	cab8e849e0ab0c32	3367b1 fbb4d2ffa7
55	0101010101010102	869efd7f9f265a09	451f0c33f24fb8dc	2b74c1d96cde840b

Table A. 12 Values To Be Used for the Permutation Operation Known Answer Test
for TCBC-I, TCFB-P and TOFB-I Modes of Operation
(NOTE -- TEXT1 $=$ TEXT2 $=$ TEXT3 $=0000000000000000$
IV1 $=0000000000000000$
IV2 = 5555555555555555
IV3 = aa aa aa aa aa aa aa aa)

ROUND	KEY	C1/RESULT1	C2/RESULT2	C3/RESULT3
0	1046913489980131	88d55e54f54c97b4	23c25ab3e19b6b94	e5b490db69b0f2ec
1	1007103489988020	0c0cc00c83ea48fd	9e7b9f655eafef5d	2031be52988cd49e
2	$10071034 c 8980120$	83bc8ef3a6570183	948e0180ec95ab61	fcb4a56abf4b7b4e
3	1046103489988020	df725dcad94ea2e9	e97bb3b10db9f700	f627685cf879c481
4	1086911519190101	e652b53b550be8b0	df9e3ce144e6a0df	373a495e2a289a9e
5	1086911519580101	af527120c485cbb0	5fc7e5405519f6fb	5d8c63f84dc7b760
6	$5107 b 01519580101$	0f04ce393db926d5	4ce6c34fc99a7e47	$43599 c 906 e a a 26 a f$
7	$3007 b 01519190101$	c9f00ffc74079067	d59da3b97fa77d57	3ad69f58d64555fd
8	3107915498080101	7cfd82a593252b4e	2c90e8dcbfd28764	f5fec7cc3602fb9c
9	$10079115 b 9080140$	00b588be70d23f56	ab256e068344f3d9	2957f7aec090659f
10		cb49a2f9e91363e3	e3ef1da5cdfe2040	cbab42d154f3248c

ROUND	KEY	C1/RESULT1	C2/RESULT2	C3/RESULT3
11	3107911598080140	406a9a6ab43399ae	142df8fbcdf06f6c	f3e52c8470bd4d49
12	1007d01589980101	6cb773611dca9ada	646449eb196edbc7	2c73895acb28e4d4
13	9107911589980101	67fd21c17dbb5d70	5bc918389c2a4f52	6d09d8d4450d34ef
14	9107 d 01589190101	9592cb4110430787	325e278ccb35a9b4	c67bed021618f6e8
15	1007d01598980120	a6b7ff68a318ddd3	bb2eaf9937470838	e45e7c5e8ba13dae
16	1007940498190101	4d102196c914ca16	a79acae80a89e1cf	73a5317d256ee9e6
17	0107910491190401	2dfa9f4573594965	70ce079b819d62a4	a6683459b9162215
18	0107910491190101	b46604816c0e0774	d40017b0499f3b3f	ef4c12c38fa94b67
19	0107940491190401	6e7e6221a4f34e87	484e191a8899dbd3	5bc2e500fd653804
20	19079210981 a 0101	aa85e74643233199	34ca696261a93635	d566849104e9f2f4
21	1007911998190801	2e5a19db4d1962d6	59a314314758d33c	fde57dae97810b56
22	10079119981a0801	23a866a809d30894	7782def75ae242b2	efaaba105ea97d41
23	1007921098190101	d812d961f017d320	e216e1e31589ec45	046bb3c67162342f
24	100791159819010b	055605816e58608f	75ecaecf73060451	e1729017bbdcfbd2
25	1004801598190101	abd88e8b1b7716f1	19dfcaebdf3f8958	ab3b5a50ebd4c354
26	1004801598190102	537ac95be69da1e1	16886a23bbb4cdba	353357f88bec120f

ROUND	KEY	C1/RESULT1	C2/RESULT2	C3/RESULT3
27	1004801598190108	aed0f6ae3c25cdd8	fc9e390a9093a7ac	8868 a 9829113 d 4 a 3
28	1002911598100104	b3e35a5ee53e7b8d	13685 e 1 b 83 c 61 eef	0ec122be6dc26c83
29	1002911598100201	e2f5728f0995013c	1423db30c7e118fb	e5f2d4dd2f43d9d1
30	1002911698100101	1aeac39a61f0a464	31eed52fa33c013d	dcf4548cf2374875
31				

REFERENCES

[1] Triple Data Encryption Algorithm Modes of Operation, ANSI X9.52-1998.
[2] Modes of Operation Validation System (MOVS): Requirements and Procedures, NIST Special Publication 800-17, 1998.
[3] Data Encryption Standard (DES), FIPS PUB 46-3-1999.

[^0]: NOTE -- the significant bits are set to " 0 " and the parity bits are set to " 1 " to make odd parity.

