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Abstract

We present a new and fast public key sys-
tem. Let K be a finite field of 2™ elements.
Let ¢4, P3, P2, p1 be tame automorphisms of
the n + r-dimensional affine space K"*". Let
the composition ¢4pspadr be w. The auto-
morphism m and some of the ¢;’s will be hid-
den. Let the plaintext space be K" and the
ciphertext space be K"". Let the restric-
tion of w to the plaintext space be T as
=(f1, +, foar) K* K" The field K
and the polynomial map (f1,- -, fnir) will be
announced as the public key. The private key
will be the set of maps {¢1, b2, ¢3,Ps}. The
security of the system rests in part on the dif-
ficulty of finding the map © from the partial
information provided by the map T and the
factorization of the map 7 into a product (i.e.,
composition) of tame automorphisms ¢;’s.

keywords: tame automorphism, public
key system, public key, private key, plain-
text, ciphertext, signature, master key, error-
detect.

1 Introduction

Thank Prof. D. Allison for inviting me to
speak here.

*Math Department, Purdue University, West Laf
ayette, Indiana 47907-1395. tel: (765)-494-1930, e-
mail ttm@math.purdue.edu

In this talk we will introduce a new pub-
lic key system, the "Tame Transformation
Method” or TTM. Omne should not view
"TTM” as an abbreviation of ” Time To Mar-
ket” nor of ”Time To Money”. Many years
ago, I wrote a text book ” Algebra” for gradu-
ate students. In there I mentioned RSA ([12])
as a cute example of number theory. In the
summer of 1995, Dr. John M. Acken of Intel
came to visit my family. He raised the ques-
tion of a fast public key system. I reviewed
my book and realized that classically people
glued a big chunk of characters together, say
128 characters with each an 8 bits number, so
one got 1024 bits. Then one viewed this huge
data as a binary whole number. One played
with those 1024 bits numbers in a modular
sense. It is naturally slow to manipulate those
huge numbers. It is essentially the same for
ECC and other group-theoretic ones.

Theoretically, in the past, most encryption
systems are based on problems of finite com-
mutative groups (as represented in the num-
ber theory); one either asks to find x, if exists,
in the following equation g* = y where ¢ is a
given element of the group and y is an arbi-
trary element of the group as in ”discrete log
problem”, ElGamal system, ECC etc, or asks
to find the order, ¢(n)(= (p — 1)(¢ — 1)), of
the group, (Z/nZ)*, as in RSA etc.

Maybe I shall mention that the public key
system is not a mathematical problem. Most
mathematicians will dismiss any discussion



about public key systems which can be solved
in finitely many steps.

Mathematics or not, public key system is
interesting in itself. There is no reason to
stick to the number-theoretic approachs of the
classical encryption systems. We may con-
sider a non-commutative group, G, of map-
pings from a set S to a set T such that the
group G is infinite dimensional generated by
an infinite set {¢;} with the property that
each generator ¢; is easily invertible on a
given point in T. If it is hard to factor any
element m € G into a product []; ¢; of the
generators, then we may have a new encryp-
tion system if it satisfies further criterion. In
this case, the set S will be the set of plain-
text, the set T will be the set of ciphertext,
the public key will be the map 7 and the pri-
vate key will be the decomposition m = []; ¢;.

Practically, let us reconsider the problem
of RSA 1024. Let aq,...,a198 be 128 charac-
ters with each an 8 bits number. The natural
way is not to glue them together. We shall
treat them as a point a = (a1, ...,a128) (a so
called ”plaintext”) in 128 dimensional space.
To scramble it, we simple apply a map 7 to
the 128 dimensional space and get a new point
b = (by,...,b128) (a so called "ciphertext”).
We require that the map m € { a group gen-
erated by some suitable maps {¢;}}. We re-
quire that

(a) the required compositions ™ = H bj
J
are non-linear to prevent attacks

using linear algebra.

(b) both value ¢;(a) and its inverse value
¢;"(b) can be computed easily.

(c) a composition of a few of the maps
should be hard to be decompsed

and its inverse hard to be recovered.

(d) it should be user-friendly.

There are ready candidates ”Tame Au-
tomorphisms” (see below). Note that the

"Tame Automorphism Group” (the group
generated by all tame automorphisms) is non-
commutative and infinite dimensional.

The beauty of Tame Automorphisms is
that after compositing a few of them, the re-
sulting map loses all appearances of a Tame
Automorphism (cf the example below) and is
hard to be decomposed back. For a technical
reason, we shall select the space S of plaintext
to be a subspace of the space T (of cipher-
text). Furthermore we require the coefficient
field of the 128 dimensional space to be the
finite field GF(2%) (see below). Thus all com-
putations will be fast. Then we have a fast
public key system.

The concept of the Tame Automorphisms
is fundamental to some algebraists and some
algebraic geometers. However, it is a surprise
that most computer scientists never heard
about the concept. The closest topics cov-
ered by the researchers in encryption are the
Imai-Matsumoto system ([7]), Patarin’s drag-
ons ([10]) and the attempts of expressing mul-
tivariate polynomial functions as a composi-
tion of one polynomial of one variable and
another polynomial of several variables ([4],
[5]). The last problem is much simpler than
the problem of decomposition of maps (see
below) and the running time for algorithms
to solve the simpler problems tends to grow
exponentially with the number of variables.

2 Mathematical background

This is the first time the theory of Tame Auto-
morphisms will be applied to provide a public
key system. We shall explain every term used
in this lecture.

(a) Finite Field

The finite field GF(2™) of 2™ elements
is the collection of the m bits numbers
(a1,as,...,an), where a;’s are zeroes or ones,
and the sum of these m bits numbers is bit-
wise, while the product depends on the defin-
ing irreducible polynomial, which can be car-



ried out by a LFSR (linear feedback shift reg-
ister) or by looking up a table.

(b) Affine Space

Let K be a field, say GF(2™). Let K"*"
be the affine space of dimension n+r over K.
Note that an ”affine space” K" is a vector
space without the algebraic structure and the
origin, i.e., the ”physical space”. we prefer
an affine space over a vector space because
(1) we need to remove the origin, (2) we shall
consider non-linear maps such as polynomial
maps.

(c) Tame Automorphism

A linear transformation ¢ = (¢, ..., ¢¥n4r)
is a map of the following form,

Pi(T1, eons Trgr) = D 355 + by
J

where a;; and b; are elements in K. A linear
transformation 1 is said to be invertible if the
coefficient matrix (a;;) is invertible.

Definition: We define a tame automor-
phism ¢; = (di1, -+, Pintr) as either an
invertible linear transformation, or of the
following form in any order of variables
Z1,*+, Tpir With polynomials h; ;,

(1) gii(z1,-, Tngr)
=z1+hii(z2,-, Tpyr) =1
(2) : ¢i,2($1, L Tpgr)
=xo + hia(x3, , Tnyr) = Y2

: ¢i,j($17 T 7$n+1")

=zj+hij(Tjr1, Togr) = Yj
(n + 7") : ¢i,n+r(x1a T axn—l—r)
= Tn4r = Ynitr
Example:

Let K = GF(2),¢(z1,32,23) = (21 +
T2X3,T9 +£E§,(L‘3),T]((L‘1,:E2,:E3) = ((L‘l,(L‘Q,(L‘g +
z?) be two tame automorphisms. Then it
is easy to see that ¢?(zy,x0,73) = (21 +

T3, 19, x3) and (w1, T2, 3) = (71 + 7273 +
1239, 2o + 23 + 1, 13 + 27)

The group generated by all tame auto-
morphisms is called the tame automorphism
group.  Note that the group product is
the composition of maps, i.e., substitution,
which is different from the product of poly-
The following proposition and its
corollaries will be given without proofs.

nomials.

Proposition 1 Let a tame automorphism ¢;
be defined as in the preceding paragraph. We
have the inverse ¢; ' = ((ﬁi_’ll, » -,¢i_771+,) with
Tp+r ﬁbi_,rh_r (y1, te ayn-i-r) Yn+r and
zj = i W1, Ungr) = Y5 — hig(¢i) 41 (w1,

Wnir)s s b UL Ynr)), for § o=
n+r—1.--,1

For instance, in the case of four variables,
we have the inverse polynomial map ¢; in
the following abstract general form in terms
of variables,

Gid (Y1, ys) = s

bia (Y1, ya) = y3 — hiz(ya)

bio W1y ya) = Y2 — hia(ys — hiz(ya),
Y1)

bit (1,5 ya) = y1 — hin(y2 — hip(ys —

hi3(ya),ya),y3 — hi3(ya), ys)

In general, the total de-
gree of ¢, ]-l(yl, “++ ., Yntr) increases very fast
and the number of terms can be quite large
as indicated by our later discussions. There-
fore it is impractical to actually write down
the polynomials ¢; ].1 (Y1, Yntr). However,
if a point (y1,---,¥,,) is given, the value of
the inverse map can be readily computed in
the following special form in terms of num-
bers.

Corollary 2
Given a set of values (y}, -, yl,) €K
and o tame automorphism ¢; as in the



Definition of this section, then the wval-
ues (xlla"'aq;;;,+r) = (Qbi_,ll(ylla"'ay%+r)a"'a
¢i,n+1" (ylla e 7y;L+r)) € K" can be found
by induction; first, we have .,

L s Ynir) = Ynirs inductively we

!/
i,n+r (y17 e
/ / /
have x5 q,- -+, Ty, € K, then we have x;
. , DY
hi (€415

-1
b; V1> Ypr) = y} - s T gr)

forj=n+4+r—1,---,1.

Corollary 3 Given the decomposition ® =
i—1 ¢i where ¢; are tame automorphisms,
then we have 7+ = [[:=) ¢i_1. Furthermore,

if a set of values {yg} is given, then we have

_ =1 ,—1
™ l(ylla"'ay;H»r): 2:71, [ (ylla"'ay7,1+r)'

3 Theory of automorphisms
groups

There is a long history of studying ‘automor-
phism groups’ for affine spaces K"*" and ‘em-
bedding theory’ in mathematics. There are
thousands of papers on those subjects. The
theory of automorphism groups for K? was es-
tablished by W. Van der Kulk in 1953 in [13]
which stated that the automorphism group
for K? is the tame automorphism group, i.e,
any automorphism of K? can be written as
a canonical product of tame automorphisms.
The most famous problem in this area is the
fifty eight year old Jacobian Conjecture ([2])
for 2-dimensional space. For embedding the-
ory ([1], [8], [9]), the simplest case, i.e., the
(algebraic) embedding of affine line to affine
plane in characteristic 0, had been an open
problem for forty years. It was solved in [1]
using long and difficult arguments. In the
case of finite fields, the embedding problem
is open for n = 1 and n+r = 2, see [8]. They
are beyond the scope of the present article.
There is an abyss between our knowledge of
the automorphism group of K? and the auto-
morphism group of K**" for n +r > 3. For
n+r > 3, every element 7 in the tame auto-
morphism group has a factorization m = [[; ¢;
by its definition, however, there is no known

way to find it. In [9], Nagata constructed
an automorphism as follows; o(x1,x9,23) =
(z1, 22 + 21 (2173 + 23), 13 — T2 (7123 + 23) —
z1(z123+23)?%) for n+r = 3. One can not de-
cide whether o is in the tame automorphism
group since there is no theorem for the above
factorization (Note that one can show that /2
is not rational since we know the factorization
theorem for integers).

4 Principle or Algorithm

Principle: Let m, n, r, s be positive in-
tegers. Let n +r > 3, and K a field of
2™ elements. Let the user select k£ tame

automorphism ¢y, - -, P2, 1 of K. Let
T o= ¢ papr=(m1, -, Tpgr). Let @ =
(771(171,"',1'“,0,"‘,0),"',7Tn+r($1,"',$n,

0---,0)), and fi(z1, - 2n) = w1, -,
Zp,0,---,0)fori=1,--+,n+r.

The user will announce the map 7 =
(fi, s foer): K =K" and the field K
of 2 elements as the public key.

Given a plaintext (z,---,z,) € K". The
sender evaluates y; = fi(z},---,z}). Then
the ciphertext will be (yi,---,y,,) € K",

The legitimate receiver (i.e., the user) re-
covers the plaintext by (z},---,z],0,---,0)
=¢r s Ynir) (see Corollaries
2 & 3). The private key is the set of maps

{¢17 o 7¢/€}

5 Component

We will give a report of an implementa-
tion (for a complete detail for TTM 1.9, see
http://www.usdsi.com/ttm.html) for the case
that n=64, n+r=100. In our implementation,
let the field K be GF(2%), the finite field of
28 elements. We will build four tame au-
tomorphisms ¢4, ¢3, P2, p1 which will be de-
cided by user’s input. The maps ¢4, p; are
invertible linear transformations. The com-
position ¢3¢y = (g*1, ..., q*100), which is pro-
vided by the software and the user’s input,



will have the following properties,

(1) all componenets, g*;,are polynomials
in 64 variables of degree 2.

(2) the degree 2 homogeneous parts of
q*;’s are linear independent.

(3) no polynomial in ¢*;’s of degree less
than 8 will generate a power of any

polynomial of degree 1.

Furthermore, we require that the linear trans-
formation ¢; to move the origin (0,...,0) to a
point (by, ..., bgg) where all b;’s are non-zeroes,
and the linear transformation ¢4 to make the
composition ¢gp3pap fixes the origin. The
reason is that then all linear forms of g¢x;’s
will not form a linear transformation of the
vector space K%. The purpose of the above
requirement is to safeguard the linear terms
from an attack using linear algebra.

To implement the above principle, we use
a Component Qg (see below). To indicate
the influence of the user on the selection of
this component, we insert only one parameter
(which could be many), a1, in the formulation
of it. The user will select more functions (see
section 6) to make individual scheme non-
traceable. The component in this section is
example by nature, it is selected due to the
theoretical clearness. Similar ones can be con-
structed.

The following definition will be used in the
discussion of Component Qg,

Definition Let ¢1,---,qs be polynomials
in variables x1,---,z;. Let £(z1,---,2¢) be a
polynomial. If
Qa1 (m1, -+ @) -+, qs(T1,- -+, T1))
— o1, m)

Then Q is called a generating polynomial of £
(over qi,--+,qs) . Furthermore, if @ is of the
minimal degree among all possible generating
polynomials of ¢, then it is called a minimal
generating polynomial of £, and its degree is

called the generating degree of £, in symbol
gendeg(€). If there is no such polynomial @,
then we define gendeg(¢)=
Now, let us define the Component Qg as
follows,
Component Qg: Let the field K be of 28
elements, t = 19, s = 30. and a; is any ele-

Q.

ment in K. Let
qi(z1,- -+, T19) = T1 + a122 + TaT6;
@1, T19) = 43 + L3273
g3(z1, -+, 219) = 2§ + T4Z10;
qu(x1, -, 19) = T3Ts5;
qs5(z1,- -+, T19) = L3213
q6(T1,- -+, T19) = T427;
qr(x1, -+, T19) = T425;
gs(z1, -+, 219) = 2% 4 T5211;
qo(z1,---,m19) = fEG + x3xy;
qio(z1, -+, 219) = T§ + T12213;
qi1(z1,+ -+, 219) = T3 + T14T15;
qi2(z1,- -, T19) = T7T10;
q13(z1,- -+, T19) = T10711;
qua(z1, -+, T19) = T3y + T728;
q15(z1, -+, T19) = 315 + 112165
qi6(z1, -+, T19) = T34 + T10Z12;
qi7(z1, -+, 219) = 335 + T11297;
q18(z1,- -+, T19) = T12%16;
quo(1,- -, T19) = T11712;
q20(z1,- -+, T19) = T8T13;
@1 (1, -, T19) = T7T13;
q22(z1,-+, T19) = T8T16;
q23(z1,- -+, T19) = T14T17;
Q24(£E1, te ,3619) = Z7T11;
q25(T1,7 -+, T19) = T12%15;
q26(z1,+ -, T19) = T10%15;
q7(z1,- -, T19) = T12717;
qos(z1. -, T19) = T11014;
ng(xl, tee ,(II19) = X118 + (II% + G%III%;
g30(z1, -+, T19) = T19 + Tig;

Then the following (Jg is a minimal generating
polynomial of z2, of degree 8 in g;,

Qs = i + (95 + G + 6165 + G54t
+a5qi3)[g5 + (qi0 + qraq15 + Q1819
+q20021 + 422024) (61 + Q617
23028 + 425026 + q13027)] + G + G30



Proof. (sketch) It is easy to see that Qg is
a generating polynomial of 22, by substitu-
tion. Clearly any generating polynomial R
of 229 must involve ¢2, which produces zs.
Therefore the polynomial R must involve g3,
which produces . Tts degree will be at least
8. Henceforth the above polynomial Qg is a
minimal generating polynomial of 2. m

Remark : The Component Qg will be used
to construct a public key scheme in the next
section. The security of the scheme depends
partially on the degrees of polynomials ¢;, Qg
and their complexities. With the degree 8
in the present implementation, an attacker
is forced to consider 3.52(10'!) vectors in a
vector space of dimension 2.69(10'¢) in our
scheme. The dimension is too high to be han-
dled by the present technology. The degrees
of polynomials g;, Qs can be increased if nec-
essary. n

For the convenience of discussion in the
next section, let us define

Definition An invertible linear transforma-
tion ¢1 = (1,1, -+, P1,n4r) is said to be of
type A if
n-+r
bri= Y aijz;j+bi
7j=1

then

(1)For i = 1,---,n, we always have b; # 0,

a;j=0forj=n+1---,n+r
and at least half of the remainning
a;j are non-zero.

(2)For i=n+1,---,n+r, we always

have ¢1,i = Tj.

6 Implementation Scheme

Let n = 64, r = 36, n 4+ r = 100. Let the
field K be GF(28), the finite field of 28 el-

ements. We will build four tame automor-
phisms ¢4, ¢3, P2, 1. The maps ¢1, P4, pro-
vided by the user are invertible linear trans-
formations with minor restrictions (see (A),
(C) below). The non-linear maps ¢3, ¢3 are
built essentially with Component Qg of the
last section with minor supplements from the
user (see (B) below).

Notations:
Let us use the same notations as in the
last section; polynomials ¢1,- - -, g309, the gen-

erating polynomial Qg(q1,---,q30). Let [j] =
j mod 8 and 1 < [5] < 8.

User’s selection:

(A) The user selects ¢1 = (¢1,1,- -, ¢1,100)
to be any invertible linear transformation of
type A (see the last Definition of section 5).

(B) The tame automorphisms ¢,
(2,1, d2,100) and ¢3 = (¢3,1,+, H3,100)

are defined according to the following rules
(1) = =17,

(1)* . ¢2,,~(x1, e ,(II100) = T, fOI‘ 7 = 1,2.

(2)" : poi(21,- -+, w100) = T + Ti1Ti 2,
fors =3,---,9.

(3)" : i1, -+, w100) = @i + ;) + @y
Tli—5] + Lfi1]fitg), for 8 =10,---,17,

(3)" : poi(T1,+++, T100) = Ti + T[i_1)T[i4)
+2})T(i44), for i =18,---,25,

(3)" : doi(z1,- -+ T100) = Ti + T[Ty
(i Tiy5), for i =26,---,30,

(4)* : poi(x1,- -+, x100) = Ti + $12—107
fori=31,---,60

(5)* & po61(z1, -+, T100) = Te1 + aiT]y + T3,

(5)" : doga(z1,- -+, T100) = T62 + Ti1,

(5)* . ¢2,63($1’ e ,$100) = Te3 + a%w% + w%o,

(5) : dogal(x1, -, 2100) = Tea + Tgs,

(6)" : oi(w1,+ -+, T100) = Ti +
Qi—64(T9, T11," ", T16, T51," "+ » T62),

fori=265,---,92
(7)" = pai(x1,-- -, 2100) = @i +

%—92(:1010, L1799 X20, X155, L165 L51,



", T60, T63, T64),
for1=293,---,100

(8): ¢3,z‘($1, S, T100) = T,
fori=3,---,100

(9)" : p32(x1,- -+, T100) = T2 +

Q8($93,"',5E100,3€73,"'a3692,$63,9664)
(10)* : p31(z1,- -, w100) = 21 +
Qs (x5, T92, Te1, T62)

(C) The user selects ¢4 to be an invert-
ible linear transformation satisfying condi-
tion (11)* in the following way, where m =
(1,3 100)s

(11)* T = ¢4¢3¢2¢1, and 7Ti(0, s ,0)

=0
The field K and polynomials
filz1,- -, z64) = mi(x1,-+,T64,0,---,0) for

i =1,---,100 will be announced as the pub-
lic key. The private key is the set of maps
{¢17 b2, 3, ¢4}

Let (@, --,7%,) € K5 be the plaintext.
The sender evaluates vy, = fi(z, -+, zf)-
Then the resulting (y],---,¥]) € K0 will
be the ciphertext.

The legitimate receiver (i.e., the user) re-

covers the plaintext by (z},---,zg4,0,--+,0)
=7 (Wh, -, Yhgo) Which can be done
easily according to Corollaries 2 &3. n

It is easy to see that the above constructed
maps satisfying the conditions 1), 2), and 3)
of the section 5.

7 Plaintext, Users and Com-
pactness

Let us count the possible number of plain-
text. Since the number of plaintext is the
number of choices for z/, -+, xf,, we see that
there are 2°'? such plaintext.

Of equal importance to having a large num-
ber of possible plaintext is having lots of pos-
sible users. A simple count of terms of ¢y, ¢4

results in the total possible number of users
S 961424

Now let us look at the compactness of the
scheme. It is easy to see that the number of
terms of the public key is 214, 400 (for another
software implementation TTM 3.2, the num-
ber 8,512). On the receiver’s side, the total
number of terms is 17,000 (the corresponding
size of the private key for TTM 3.2 is 3,502).

8 Technique Report

Following the principle of this article, there
are several software implementations. For
the convenience of discussions, the method
will be called ”tame transformation method”
(TTM). There are versions TTM 1.9 (of this
article), TTM 2.1, TTM 2.3, TTM 2.5, TTM
3.0 and TTM 3.2 available. They use C Lan-
guage. For m=8, the rates of expansion of
data are 1.4, 1.56, 1.63, 1.5, 2.66 and 3.5
respectively. They have been used on com-
monly available machines as 266 Mhz Pow-
erPC 750 etc. The speed of encryption is 94
k bit/sec for TTM 1.9, 1,001 k bit/sec for
TTM 3.0 and 1,626 k bit/sec for TTM 3.2.
In comparison, the speed is 16 k bit/sec for
RSA 1024 Bsafe 4.0 and 21 k bit/sec for ECC
160.

The decrypting speed is in general 4 to
15 times faster than the encrypting speed
(the decrypting speed for TTM 3.2 is 8,271
k bit/sec). For the user who has the private
key, the speed of encoding can be increased
to 8,271 k bit/sec.

9 Useful Properties of the
Scheme

Error-Detect Function
Upon receiving the ciphertext
(Y5, -+, Yi00), the user applies Corollaries

2 & 3 to evaluate ¢; ¢y by by (U], ¥ioo)
to decode it and get (Z1,---,Z100). If one of



Z73,- -+, T100 18 not zero, then there must be
an error.
Master Key Function

Let a group of indices, S, be a few extra in-
dices 101,102, --- added. Select ¢4 such that
the corresponding subspace generated by z;
with ¢ € S and the subspace generated by x;
with j ¢ S are both invariant. The original
public key scheme gives a master key. A sub-
ordinate key can be produced by deleting all
fi's withi € S.

The ‘master key-subordinate key’ relation
can be broken by alternating any one of the
linear transformations ¢1, ¢4 involved.
Signatures

The map 7 is not an onto map. However,
we may restrict the map to a suitable sub-
space. Let V = {(di,---,d;,0,---,0) : d; €
K} CK% where j is a fixed integer less than
or equal to 62. Let V = ¢7 (V). We will
require that ¢, induces a linear transforma-
tion on W = {(e1, --,e;,0,---,0) : ¢ €
K} cK' Let 7 : (c1,--,¢j, -+, cr00) —
(c1,--+,¢;) be a projection. Clearly 77 is a
one to one and onto map from V to the j-
dimensional affine space. Moreover, the map

is tame, and its inverse at a point (y,---,y;)
can be found. The inverse at (yi,--,y;)
forms a signature.

10 Cryptanalysis for the

Scheme

I. Direct Methods

There is no known way to recover the pri-
vate key {¢4,---,¢1} from the public key 7
and the field K. There are three other di-
rect ways to attack the scheme: (1) use ‘in-
verse formula’ for power series to find poly-
nomial expressions of m=! ([3]). Note that
only # is given, since 7! does not exist the-
oretically, there is no way to find it, (2) let
z; be a polynomial, g;, of {y;} with indeter-
minate coefficients for all 7. Do enough ex-
periments using {z;} to determine {y;} and

then solve the system of linear equations in
indeterminate coefficients to find polynomials
gi, or (3) using ‘resultant’ to the expression
yi = fi(z!, -, zg4) to eliminate all z} except
one, say r’;, and recover the expressions of z
in terms of y{,- -, ¥}g0-

At this moment, the above three direct
methods can be shown to be ineffective. Due
to the space limitation, the detail discussion
is omited. The other possible way of attack-
ing is to recover ¢;’s or their equivalent forms
which can be shown to be ineffective too.

II. Other methods

There are two other methods: (1) search
for polynomial relations, (2) identify the high-
est homogeneous parts. They all involve huge
memory space and can be shown to be inef-
fective.

There is another method using the tech-
nique of [11] and [12]. The complexity of the
problem as shown is higher than 2'0%* (the
cryptanalysis there can not be carried out di-
rectly due to the problems of finding 7!, of
finding the individualized ¢3¢2 and the in-
equality of two dimensions 64,100. The es-
timates of the other two attacks are disre-
garded due to the large requirements of mem-
ory spaces).

Lately, there is an attack by the method
of "relinearization” (cf [6], page 10) of Kipnis
and Shamir. This attack can be made imprac-
tical either involving large number of vari-
ables or jack up the degrees of ¢; to three or
higher. In our present case, the ”relineariza-
tion” methid involves solving 1.4(10%) linear
equations in 1.2(10°) variables. Or if we in-
crease the degrees of ¢; to three, the attack
will result in O(10'%) equations in O(10'6)
variables.

As for the brute force method, Assuming
it only take one clock cycle to test if a set of 64
random numbers is correct, the attacker still
need 3 x 10" mips (one million instruction
per second) years to crack the scheme. In
comparison, it requires 3 x 10?° mips years to



cracked RSA 2048.
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Summary

The present implementation scheme can with-
stand all known attacks. By its nature, the
algorithm is less cumbersome to use than
methods that are number theory based. Fur-
thermore, it has the novel functions of error-
detect and master key. We wish that this al-
gorithm will provide a new direction of re-
search.
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