
Quartz, an asymmetric signature scheme for

short signatures on PC

Primitive specification and supporting

documentation

(second revised version, October 2001)

Nicolas Courtois, Louis Goubin, Jacques Patarin

CP8 Crypto Lab, SchlumbergerSema, 36-38 rue de la Princesse,
BP 45, 78430 Louveciennes Cedex, France

JPatarin@slb.com, courtois@minrank.org, LGoubin@slb.com

Note: This document specifies the updated final version of the Quartz signature
scheme, slightly modified as allowed in the second stage of Nessie evaluation process, in
order to improve the speed and the security. In some papers that refer to the old version,
it is sometimes called Quartzv1, and Quartzv2 is the new version. This is therefore the
only official version of Quartz. We note that the key generation has not changed, the
signature computation has changed, and the signature verification has changed slightly.
In the Appendix of the present document we summarize all the changes to Quartz, for
readers and developers that are acquainted with the previous version. It also includes
an explanation why these changes has been made.

1 Introduction

In the present document, we describe the Quartz public key signature scheme.
Quartz is a HFEV− algorithm (see [7]) with a special choice of the parameters.

Quartz belongs to the family of ”multivariate” public key schemes, i.e. each signature
and each hash of the messages to sign are represented by some elements of a small finite
field K.

Quartz is designed to generate very very short signatures: only 128 bits ! Moreover,
in Quartz, all the state of the art ideas to enforce the security of such an algorithm have
been used: Quartz is built on a ”Basic HFE” scheme secure by itself at present (no
practical attacks are known for our parameter choice) and, on this underlying scheme,
we have introduced some ”perturbation operations” such as removing some equations
on the originally public key, and introducing some extra variables (these variables are
sometime called ”vinegar variables”). The resulting schemes look quite complex at first
sight, but it can be seen as the resulting actions of many ideas in the same direction:
to have a very short signature with maximal security (i.e. the ”hidden” polynomial F
of small degree d is hidden as well as possible).

As a result, the parameters of Quartz have been chosen in order to satisfy an extreme
property that no other standardized public key scheme has reached so far: very short

1

signatures. Quartz has been specially designed for very specific applications because
we thought that for all the classical applications of signature schemes, the classical
algorithms (RSA, Fiat-Shamir, Elliptic Curves, DSA, etc) are very nice, but when we
need some very specific properties these algorithms just can not satisfy them, and it
creates a real practical need for algorithms such as Quartz.

Quartz was designed to have a security level of 280 with the present state of the art
in Cryptanalysis, as required in the NESSIE project.

2 Notations

In all the present document, || will denote the ”concatenation” operation. More pre-
cisely, if λ = (λ0, . . . , λm) and µ = (µ0, . . . , µn) are two strings of bits, then λ||µ denotes
the string of bits defined by:

λ||µ = (λ0, . . . , λm, µ0, . . . , µn).

For a given string λ = (λ0, . . . , λm) of bits and two integers r, s, such that 0 ≤ r ≤
s ≤ m, we denote by [λ]r→s the string of bits defined by:

[λ]r→s = (λr, λr+1, . . . , λs−1, λs).

3 Parameters of the algorithm

The Quartz algorithm uses the field L = F2103 . More precisely, we chose L = F2[X]/
(X103 + X9 + 1). We will denote by ϕ the bijection between {0, 1}103 and L defined
by:

∀ω = (ω0, . . . , ω102) ∈ {0, 1}103

ϕ(ω) = ω102X
102 + . . . + ω1X + ω0 (mod X103 + X9 + 1)

3.1 Secret parameters

1. An affine secret bijection s from {0, 1}107 to {0, 1}107. Equivalently, this param-
eter can be described by the 107 × 107 square matrix and the 107 × 1 column
matrix over F2 of the transformation s with respect to the canonical basis of
{0, 1}107. We denote by SL the square matrix (”L” means ”linear”) and SC the
column matrix (here ”C” means ”constant”).

2. An affine secret bijection t from {0, 1}103 to {0, 1}103. Equivalently, this param-
eter can be described by the 103 × 103 square matrix and the 103 × 1 column
matrix over F2 of the transformation s with respect to the canonical basis of
{0, 1}103. We denote by TL the square matrix (”L” means ”linear”) and TC the
column matrix (here ”C” means ”constant”).

3. A family of secret functions (FV)V ∈{0,1}4 from L to L, defined by:

FV (Z) =
∑

0≤i<j<103
2i+2j≤129

αi,j · Z2i+2j

+
∑

0≤i<103
2i≤129

βi(V) · Z2i

+ γ(V).

In this formula, each αi,j belongs to L and each βi (0 ≤ i < 8) is an affine
transformation from {0, 1}7 to L, i.e. a transformation satisfying

∀V = (V0, V1, V2, V3) ∈ {0, 1}4, βi(V) =
∑

0≤k<4

Vk · ξi,k + υi

2

with all the ξi,k and υi being elements of L. Finally, γ is a quadratic transforma-
tion from {0, 1}7 to L, i.e. a transformation satisfying

∀V = (V0, V1, V2, V3) ∈ {0, 1}4, γ(V) =
∑

0≤k<`<4

VkV` · ηk,` +
∑

0≤k<4

Vk · σk + τ

with all the ηk,`, σk and τ being elements of L.

4. A 80-bit secret string denoted by ∆.

3.2 Public parameters

The public key consists in the function G from {0, 1}107 to {0, 1}100 defined by:

G(X) =
[
t
(
ϕ−1

(
F[s(X)]103→106(ϕ([s(X)]0→102))

))]
0→99

.

By construction of the algorithm, G is a quadratic transformation over F2, i.e.
(Y0, . . . , Y99) = G(X0, . . . , X106) can be written, equivalently:

Y0 = P0(X0, . . . , X106)
...

Y99 = P99(X0, . . . , X106)

with each Pi being a quadratic polynomial of the form

Pi(X0, . . . , X106) =
∑

0≤j<k<107

ζi,j,kXjXk +
∑

0≤j<107

νi,jXj + ρi,

all the elements ζi,j,k, νi,j and ρi being in F2.

4 Generation of the key

In the Quartz scheme, the public is deduced from the secret key, as explained in section
3.2. We need only to describe how the secret key is generated. As described in section
3.1, the following secret elements have to be generated:

• The following secret elements of L:

αi,j with 0 ≤ i < j < 103 and 2i + 2j ≤ 129
ξi,k with 0 ≤ i < 8 and 0 ≤ k < 4
υi with 0 ≤ i < 8
ηk,` with 0 ≤ k < ` < 4
σk with 0 ≤ k < 4
τ

• The secret invertible 107×107 matrix SL, and the secret 107×1 (column) matrix
SC , all the coefficients being 0 or 1.

• The secret invertible 107×107 matrix TL, and the secret 107×1 (column) matrix
TC , all the coefficients being 0 or 1.

• The 80-bit secret string ∆.

3

Note that, through the ϕ transformation, generating an element of L is equivalent to
generating a 103-bit string.
To generate all these parameters, we apply the following method, which uses a crypto-
graphically secure pseudorandom bit generator (CSPRBG). From a seed whose entropy
is at least 80 bits, this CSPRBG is supposed to produce a new random bit each time
it is asked to.

1. Generate the coefficients of

F(0,0,0,0)(Z) =
∑

0≤i<j<103
2i+2j≤129

αi,j · Z2i+2j

+
∑

0≤i<103
2i≤129

υi · Z2i

+ τ,

from the lower to the higher power of Z. More precisely, the first 103 bits produced
by the CSPRBG give τ (when applying ϕ). We then successively generate: υ0,
υ1, α0,1, υ2, α0,2, α1,2, υ3, α0,3, α1,3, α2,3, υ4, α0,4, α1,4, α2,4, α3,4, υ5, α0,5, α1,5,
α2,5, α3,5, α4,5, υ6, α0,6, α1,6, α2,6, α3,6, α4,6, α5,6, υ7, α0,7 (each time, we use
the CSPRBG to generate 103 new random bits, and we then apply ϕ).

2. Generate the coefficients of

F(1,0,0,0)(Z)− F(0,0,0,0)(Z) =
∑

0≤i<103
2i≤129

ξi,0 · Z2i

+ σ0,

from the lower to the higher power of Z. More precisely, the first 103 bits produced
by the CSPRBG give σ0 (when applying ϕ). We then successively generate: ξ0,0,
ξ1,0, ξ2,0, ξ3,0, ξ4,0, ξ5,0, ξ6,0, ξ7,0 (each time, we use the CSPRBG to generate
103 new random bits, and we then apply ϕ).

3. Generate the coefficients of

F(0,1,0,0)(Z)− F(0,0,0,0)(Z) =
∑

0≤i<103
2i≤129

ξi,1 · Z2i

+ σ1,

from the lower to the higher power of Z. More precisely, the first 103 bits produced
by the CSPRBG give σ1 (when applying ϕ). We then successively generate: ξ0,1,
ξ1,1, ξ2,1, ξ3,1, ξ4,1, ξ5,1, ξ6,1, ξ7,1 (each time, we use the CSPRBG to generate
103 new random bits, and we then apply ϕ).

4. Generate the coefficients of

F(0,0,1,0)(Z)− F(0,0,0,0)(Z) =
∑

0≤i<103
2i≤129

ξi,2 · Z2i

+ σ2,

from the lower to the higher power of Z. More precisely, the first 103 bits produced
by the CSPRBG give σ2 (when applying ϕ). We then successively generate: ξ0,2,
ξ1,2, ξ2,2, ξ3,2, ξ4,2, ξ5,2, ξ6,2, ξ7,2 (each time, we use the CSPRBG to generate
103 new random bits, and we then apply ϕ).

5. Generate the coefficients of

F(0,0,0,1)(Z)− F(0,0,0,0)(Z) =
∑

0≤i<103
2i≤129

ξi,3 · Z2i

+ σ3,

from the lower to the higher power of Z. More precisely, the first 103 bits produced
by the CSPRBG give σ3 (when applying ϕ). We then successively generate: ξ0,3,
ξ1,3, ξ2,3, ξ3,3, ξ4,3, ξ5,3, ξ6,3, ξ7,3 (each time, we use the CSPRBG to generate
103 new random bits, and we then apply ϕ).

4

6. Successively generate the remaining coefficients (corresponding to the quadratic
part of γ(V)), in lexicographic order: η0,1, η0,2, η0,3, η1,2, η1,3, η2,3 (each time,
we use the CSPRBG to generate 103 new random bits, and we then apply ϕ).

7. To generate the invertible 107× 107 matrix SL, two methods can be used:

First Method (”Trial and error”): Generate the matrix SL by

for i=0 to 106
for j=0 to 106

S_L[i,j]=next_random_bit

until we obtain an invertible matrix.

Second Method (with the LU decomposition): Generate a lower trian-
gular 107× 107 matrix LS and an upper triangular 107× 107 matrix US , all the
coefficients being 0 or 1, as follows:

for i=0 to 106
for j=0 to 106
{

if (i<j) then {U_S[i,j]=next_random_bit; L_S[i,j]=0}
if (i>j) then {L_S[i,j]=next_random_bit; U_S[i,j]=0}
if (i=j) then {U_S[i,j]=1; L_S[i,j]=1}

}

Define then SL = LS × US .

8. Generate SC by using the CSPRBG to obtain 107 new random bits (from the top
to the bottom of the column matrix).

9. To generate the invertible 107× 107 matrix TL, two methods can be used:

First Method (”Trial and error”): Generate the matrix TL by

for i=0 to 106
for j=0 to 106

T_L[i,j]=next_random_bit

until we obtain an invertible matrix.

Second Method (with the LU decomposition): Generate a lower trian-
gular 107× 107 matrix LT and an upper triangular 107× 107 matrix UT , all the
coefficients being 0 or 1, as follows:

for i=0 to 106
for j=0 to 106
{

if (i<j) then {U_T[i,j]=next_random_bit; L_T[i,j]=0}
if (i>j) then {L_T[i,j]=next_random_bit; U_T[i,j]=0}
if (i=j) then {U_T[i,j]=1; L_T[i,j]=1}

}

5

Define then TL = LT × UT .

10. Generate TC by using the CSPRBG to obtain 107 new random bits (from the top
to the bottom of the column matrix).

11. Finally, generate ∆ by using the CSPRBG to obtain 80 random bits.

Note that the generation of a complete secret key thus requires 30497 bits from the
CSPRBG (with the second method).

5 Signing a message

In the present section, we describe the signature of a message M by the Quartz algo-
rithm.

5.1 The signing algorithm

The message M is given by a string of bits. Its signature S is obtained by applying
successively the following operations (see figure 1):

1. Let M0, M1, M2 and M3 be the three 160-bit strings defined by:

M0 = SHA-1(M),

M1 = SHA-1(M0||0x00),

M2 = SHA-1(M0||0x01).

M3 = SHA-1(M0||0x02).

With 0x00 through 0x02 denoting one single 8-bit character appended to M0.

2. Let H1, H2, H3 and H4 be the four 100-bit strings defined by:

H1 = [M1]0→99,

H2 = [M1]100→159||[M2]0→39,

H3 = [M2]40→139,

H4 = [M2]140→159||[M3]0→79.

3. Let S̃ be a 100-bit string. S̃ is initialized to 00 . . . 0.

4. For i = 1 to 4, do

(a) Let Y be the 100-bit string defined by:

Y = Hi ⊕ S̃.

(b) Let W be the 160-bit string defined by:

W = SHA-1(Y ||∆).

(c) Let R be the 3-bit string defined by:

R = [W]0→2.

6

(d) Let V be the 4-bit string defined by:

V = [W]3→6.

(e) Let B be the element of L defined by:

B = ϕ
(
t−1(Y ||R)

)
.

(f) Consider the following univariate polynomial equation in Z (over L):

FV (Z) = B.

(g) If this equation FV (Z) = B has no solutions, replace W by SHA-1(W) and
go back to step (c).

(h) Now the equation FV (Z) = B has one or several solutions in L, then let
A(1), A(2), .., A(δ) be these solutions.

(i) If there is only one solution, we put A = A(1). Otherwise, we hash each
solution I(i) = SHA-1(A(i)). Let A be the one that gives the smallest hash
I(i) in the big-endian ordering: we compare the first character in memory,
then the second etc..

(j) Let X be the 107-bit string defined by:

X = s−1
(
ϕ−1(A)||V

)
.

(k) Define the new value of the 100-bit string S̃ by:

S̃ = [X]0→99 ;

(l) Let Xi be the 7-bit string defined by:

Xi = [X]100→106.

5. The signature S is the 128-bit string given by:

S = S̃||X4||X3||X2||X1.

7

Message M -SHA-1 M0

?� � �

? ? ?
M0 0 M0 1 M0 2

168 bits 168 bits 168 bits

? ? ?
SHA-1 SHA-1 SHA-1

160 bits 160 bits 160 bits

H1 H2 H3 H4

?

? ? ?

??

?

?

??

?

?

?

?

6

-

-

-�

�

?

-0

Hi

S = S̃||X4|| . . . ||X1

S̃ Xi

X

A||V

A

B

V

Y ||R

R V R′ V ′ R” V ”

Y
SHA-1 SHA-1SHA-1(·||∆)⊕

F−1
V

160 bits 160 bits 160 bits

s−1

t−1

if i<4 if i=4

i++

if i=1

if i>1

Figure 1: Signature generation with Quartz (beginning with i = 1)

8

5.2 Solving the equation FV (Z) = B

To sign a message, we need to solve an equation of the form FV (Z) = B, with B ∈ L
and Z being the unknown, also being in L. Basically, it has been done to satisfy the
two following requirements:

• The solution should be chosen in a deterministic way in y.

• If there are several solutions, the choice is pseudo-random and depends on the
secret key ∆.

On the implementation side, the first step to find roots of the polynomial is to
compute:

Ψ(Z) = gcd
(
FV (Z)−B,Z2103

− Z
)
.

To compute the gcd above, we can first recursively compute Z2i

mod (FV (Z)−B) for
i = 0, 1, . . . , 103 and then compute Θ(Z) = Z2103 −Z mod (FV (Z)−B). Finally Ψ(Z)
is easily obtained by

Ψ(Z) = gcd
(
FV (Z)−B,Θ(Z)

)
.

With this method, the degrees of the polynomials involved in the computation never
exceed 2× 129 = 258.
Note that more refined methods have also been developed to compute Ψ(Z) (see [5]).

Now the equation FV (Z) = B has a number of solutions (in L) equal to the degree
of Ψ over L. If the degree is 0, no solutions, we try again as specified in the signature
algorithm (go back to step 4c).

Eventually we end up with an equation FV (Z) = B that has solutions. Then if Ψ
is of degree one, it is of the form Ψ(Z) = κ · (Z −A) (with κ ∈ L) and A is the unique
solution of the equation FV (Z) = B.
On the contrary, if Ψ is of degree greater than one, we need to apply some of the
known algorithms to factor polynomials over finite fields, for example the Berlekamp
algorithm, in order to find all the roots. We choose one of the roots in a pseudo-random
deterministic way, as specified in the signature algorithm above.

5.3 Existence of the signature

The success of the signing algorithm relies on the following fact: for at least one of
the successive values of the pair (R, V), there exist a solution (in Z) for the equation
FV (Z) = B.

It can be proven that, for a randomly chosen B, the probability of having a solution
in Z is approximately 1− 1

e . If we suppose that the successive values (R, V) take all the
possible values in {0, 1}7, the probability of never having a solution is approximately
given by: (1

e

)128

' 2−185.

Since the signing algorithm has to solve this equation four times, the probability
that the algorithm fails is about:

P ' 1−
(
1−

(1
e

)128)4

' 2−183.

This probability is thus completely negligible.

9

6 Verifying a signature

6.1 The verification algorithm

Given a message M (i.e. a string of bits) and a signature S (a 128-bit string), the
following algorithm is used to decide whether S is a valid signature of M or not:

1. Let M0, M1, M2 and M3 be the three 160-bit strings defined by:

M0 = SHA-1(M),

M1 = SHA-1(M0||0x00),

M2 = SHA-1(M0||0x01).

M3 = SHA-1(M0||0x02).

With 0x00 through 0x02 denoting one single 8-bit character appended to M0.

2. Let H1, H2, H3 and H4 be the four 100-bit strings defined by:

H1 = [M1]0→99,

H2 = [M1]100→159||[M2]0→39,

H3 = [M2]40→139,

H4 = [M2]140→159||[M3]0→79.

3. Let S̃ be the 100-bit string defined by:

S̃ = [S]0→99.

4. Let X4, X3, X2, X1 be the four 7-bit string defined by:

X4 = [S]100→106,

X3 = [S]107→113,

X2 = [S]114→120,

X1 = [S]121→127.

5. Let U be a 100-bit string. U is initialized to S̃.

6. For i = 4 down to 1, do

(a) Let Y be the 100-bit string defined by:

Y = G(U ||Xi).

(b) Define the new value of the 100-bit string U by:

U = Y ⊕Hi.

7. • If U is equal to the 100-bit string 00 . . . 0, accept the signature.

• Else reject the signature.

10

Message M -SHA-1 M0

?� � �
? ? ?

M0 0 M0 1 M0 2
168 bits 168 bits 168 bits

? ? ?
SHA-1 SHA-1 SHA-1

160 bits 160 bits 160 bits

H1 H2 H3 H4

?

?

?

?

?

?

6

- -

-

-

�

XiHi

Y = H1: accepted
Y 6= H1: rejected

S = S̃||X4|| . . . ||X1

S̃ X4 X3 X2 X1

U

U ||Xi

Y

⊕

G

if i=1

if i>1

i−−

if i=4

if i<4

Figure 2: Signature verification with Quartz (beginning with i = 4)

6.2 Computation of the G function

The verification algorithm of Quartz requires the fast evaluation of the function G,
which can be viewed as a set of 100 public quadratic polynomials of the form

Pi(x0, . . . , x106) =
∑

0≤j<k<107

ζi,j,kxjxk +
∑

0≤j<107

νi,jxj + ρi (0 ≤ i ≤ 99)

(see section 3.2).
To perform this computation, three methods can be used:

First method:
We can proceed directly, i.e. by successively compute the multiplications and the

additions involved in Pi.

Second method:
Each of the Pi can be rewritten as follows:

Pi(x0, . . . , x106) = x0`i,0(x0, . . . , x106)+x1`i,1(x1, . . . , x106)+ . . .+x106`i,106(x106)+ρi,

with the `i,0, . . . , `i,106 (0 ≤ i ≤ 99) being 107×100 linear forms that can be explicited.
As a result, since each xj equals 0 or 1, we just have to compute modulo 2 additions
of xj variables.

Third method:
Another possible technique consists in writing

G(x0, . . . , x106) =
∑

0≤j<k<107

xjxk · Zj,k ⊕
∑

0≤j<107

xj ·Nj ⊕R

11

with
Zj,k = (ζ0,j,k, ζ1,j,k, . . . , ζ99,j,k) ,

Nj = (ν0,j , ν1,j , . . . , ν99,j)

and
R = (ρ0, ρ1, . . . , ρ99) .

The computation can then be performed as follows:

1. Let Y be a variable in {0, 1}100. Let Y be initialized to R = (ρ0, ρ1, . . . , ρ99).

2. For each monomial xjxk (0 ≤ j < k < 107): if xj = xk = 1 then replace Y by
Y ⊕ Zj,k.

3. For each monomial xj (0 ≤ j < 107): if xj = 1 then replace Y by Y ⊕Nj .

If, for instance, we use a 32-bit architecture, this leads to a speed-up of the algo-
rithm: each vector Zj,k or Nj or R can be stored in four 32-bit registers. By using
the 32-bit XOR operation, the ⊕ operations can be performed 32 bits by 32 bits. This
means that we compute 32 public equations simultaneously.

7 Security of the Quartz algorithm

Traditionally, the security of public key algorithms relies on a problem which is both
simple to describe and has the reputation to be difficult to solve (such as the factoriza-
tion problem, or the discrete logarithm problem). On the opposite, traditionally, the
security of secret key algorithms and of hash functions relies (not on such a problem
but) on specific arguments about the construction (such as the soundness of the Feistel
construction for example) and on the fact that the known cryptanalytic tools are far
to break the scheme.

There are some exceptions. For example the public key scheme based on error
correcting codes (such as the McEliece scheme, or the Niedereiter scheme) or the NTRU
scheme do not have a security that provably relies on a well defined problem, and some
hash functions have been designed on the discrete logarithm problem.

The security of the Quartz algorithm is also not proved to be equivalent to a well
defined problem. However we have a reasonable confidence in its security due to some
arguments that we will present in the sections below, and these arguments are not only
subjective arguments.

Remark: As an example, let F be the composition the five AES finalists, with five
independent keys of 128 bits. Almost everybody in the cryptographic community thinks
that this F function will be a very secure function for the next 20 years, despite the
fact that it security is not provably relied on a clearly, famous, and simple to describe
problem.

Our (reasonable) confidence in the security of Quartz comes from the following five
different kinds of arguments, that we will explain in more details below:

1. All the known attacks are far from being efficient.

2. There is a kind of ”double” security in the design of the scheme: algebraic and
combinatorial.

3. MQ looks really difficult in average (not only in worst case).

12

4. When the degree d (of the hidden polynomial F) increases, the trapdoor progres-
sively disappears so that all the attacks must become more and more intractable.

5. The secret key is rather long (but it can be generated from a small seed of 80 bits
for example), even for computing very short signatures.

7.1 All the known attacks are far from being efficient

Three kinds of attacks have been studied so far on schemes like the basic HFE or
HFEV− (Quartz is a HFEV− scheme with a special choice for the parameters).

7.2 Some attacks are designed to recover the secret key (or an
equivalent information)

In this family of attack, we have the exhaustive search of the key (of course intractable)
and the (much more clever) Shamir-Kipnis on the basic HFE scheme (cf [6]). However
this Shamir-Kipnis attack would not be efficient on the Quartz algorithm (much more
than 280 computations are required) even if we removed the − and V perturbations.
Moreover, the Shamir-Kipnis seems to work only for the basic HFE scheme (i.e. without
the perturbations − and V) and in Quartz we have some − and V. So in fact, at present
for a scheme like Quartz we do not see how the Shamir-Kipnis attack may work at all.

7.3 Some attacks are designed to compute a signature S from
a message M directly from the equations of the public key,
as if there was no trapdoor (i.e. by solving a general system
of quadratic equations)

The MQ (= Multivariate Quadratic) problem of solving a general set of multivariate
quadratic equations is a NP-Hard problem. Some (non polynomial but sometimes bet-
ter than exhaustive search) algorithms have been designed for this problem, such as
some Gröbner bases algorithms, or the XL and FXL algorithms (see [1]) but for our
choices of the Quartz parameters, all these algorithms need more than 280 computa-
tions.

7.4 Some attacks are designed to compute a signature S from a
message M by detecting some difference on the public key
compared to a system of general quadratic equations

Many analysis have been made in these lines of attacks. Some ”affine multiple attacks”
have been design, and many variations around these attacks (”higher degree attacks”
etc). At present, with the parameters of the Quartz algorithm all these attacks need
more the 280 computations.

7.5 There is a kind of ”double layered” security in the design
of the scheme: algebraic and combinatorial

The security of the basic HFE scheme (i.e. a HFE scheme with no perturbations such
as − and V) can be considered as a kind of ”Algebraic” problem. This is because of
the Shamir-Kipnis attack that reduces HFE to the MinRank problem on very large
algebraic fields, see [2, 6]. The general MinRank problem is NP-Hard, and even if for
the basic HFE, the MinRank instances may not be NP-Hard, the best attacks known

13

on MinRank problem that is obtained from HFE are still not polynomial, as long as
the HFE degree d is not fixed with d = O(n) for example, see [2, 4].

The basic HFE scheme is Hidden in the Quartz algorithm with the perturbations −
and V and the above attacks does not apply to Quartz. To remove these perturbations
seems to be a very difficult combinatorial problem. In order to break the Quartz scheme,
it is expected that a cryptanalyst will have to solve a double problem: Combinatorial
and Algebraic, and these problems do not appear separately but in a deeply mixed way,
in the public key.

7.6 MQ looks really difficult in average (not only in worst case)

In the past, some public key schemes apparently (not provably) based on some NP-
Hard problems, such as the Knapsack problem were broken. However the MQ problem
(i.e. solving a general set of multivariate quadratic equations) seems to be a much
more difficult problem to solve than the Knapsack Problem: on the Knapsack Problem
an algorithm such as LLL is very often efficient, while on the opposite, for the MQ
problem, all the known algorithms are not significantly better than exhaustive search
when the number m of equations is about the same as the number n of variables and
is larger than about 12.

It is also interesting to notice that almost all the ”Knapsack Schemes” were broken
due to a generic algorithm on the general Knapsack problem (algorithm LLL) and not
with a specific attack on the trapdoor hidden in a general knapsack instance. Something
similar seems to happen with the schemes based on error correcting codes, such as the
McEliece or Niederreiter schemes: so far the best attacks on these schemes try to solve
the general (and NP-Hard) problem of finding a word of small weight in a general
linear or affine space, and are still unable to use the fact that the security of a specific
trapdoor instance is probably not equivalent to solving the general problem. Currently
for Quartz, as for all the mentioned schemes, the structural attacks are behind the
generic attacks on the base problem. Then for Quartz the basic problem is the MQ
problem that looks really very difficult.

7.7 When the degree d (of the hidden polynomial F) increases,
the trapdoor progressively disappears so that all the attacks
must become more and more intractable

The degree d of the Quartz algorithm is fixed to 129. However if d was not fixed, and d
could be close to 2h (h = 103 in the Quartz algorithm), then all the possible systems of
quadratic equations could appear as the public key, so the problem of solving it would
be exactly as hard as the general MQ problem (on this number of variables). Of course,
we have fixed d to 129 in order to be able to compute a signature in a reasonable time
on a computer, but this result shows that when d increases, the trapdoor progressively
disappears, so that all the attacks must become more and more intractable. So d is
really an important ”security parameter”. Our choice of d = 129 has been made to
be far from the current state of the art on the cryptanalysis with small d, while still
having a reasonable time on a computer to compute a signature.

7.8 The secret key is rather long (but it can be generated from
a small seed of 80 bits for example), even for computing
very short signatures

Many secrets are used in Quartz: the secret affine permutations s and s, the secret
function F , the secret vinegar variables V , and the secret removed equations. To

14

specify all the secret we need a rather long secret key. However, it is also possible to
compute this secret key from a short seed by using any pseudorandom bit generator. In
general the time to generate the secrets from the small seed will not increase a lot the
time to generate a signature. Moreover it has to be done only once if we can store the
secret key in a safe way on a computer or a smart card. So for practical applications it
is always possible to generate the secret key from a seed of, say, 80 bits, but this secret
key for a cryptanalyst of Quartz will always be similar to a much larger secret key.

So Quartz has a property that already existed in schemes like DSS (where the
lengths of p and q are different): the length of the secret key is not directly linked to
the length of the signature. (This property does not exist in RSA, where the length
of the secret key is never larger than the length of the signature. It explains why a
Quartz or DSS signature can be much smaller than a RSA signature).

The fact that a cryptanalyst of Quartz has to face such a large secret key, may
also be an argument to say that in practice the time to find a Quartz secret key may
be intractable in practice, even if a new sub-exponential algorithm is found and used.
(So far many cryptanalysis, such as the ”affine multiple attacks”, have to solve huge
systems of linear equations by Gaussian reductions, and often the number of variables
in these systems increases very fast with the length of the secret, so these attacks
become impractical due to space and time limitations). However this argument is not
as convincing, and maybe not as strong, as the other arguments presented above.

8 Summary of the characteristics of Quartz

• Length of the signature: 128 bits.

• Length of the public key: 71 Kbytes.

• Length of the secret key: the secret key (3 Kbytes) is generated from a small seed
of at least 128 bits.

• Time to generate the public key1: 4 seconds.

• Time to sign a message1: 10 seconds on average.

• Time to verify a signature1,2: less than 1 ms.

• Best known attack: more than 280 TDES computations.

1On a Pentium II 500 MHz.
2For a short message of less than 512 bits.

15

References

[1] N. Courtois, A. Shamir, J. Patarin, A. Klimov, Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations, in Advances in Cryp-
tology, Proceedings of EUROCRYPT’2000, LNCS n◦ 1807, Springer, 2000, pp.
392-407.

[2] Nicolas Courtois: The security of Hidden Field Equations (HFE); Cryptographers’
Track RSA Conference 2001, San Francisco 8-12 Avril 2001, LNCS2020, Springer-
Verlag.

[3] Nicolas Courtois: Generic attacks and provable security of Quartz; work in
progress, presented at the Nessie workshop, September 13th 2001, Royal Holloway,
University of London.

[4] Nicolas Courtois: The security of cryptographic primitives based on multi-
variate algebraic problems: MQ, MinRank, IP, HFE; PhD thesis, Septem-
ber 25th 2001, Paris 6 University, France. Mostly in French. Available at
http://www.minrank.org/phd.pdf

[5] E. Kaltofen, V. Shoup, Fast polynomial factorization over high algebraic extensions
of finite fields, in Proceedings of the 1997 International Symposium on Symbolic
and Algebraic Computation, 1997.

[6] A. Kipnis, A. Shamir, Cryptanalysis of the HFE public key cryptosystem, in Ad-
vances in Cryptology, Proceedings of Crypto’99, LNCS n◦ 1666, Springer, 1999,
pp. 19-30.

[7] J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of asymmetric algorithms, in Advances in Cryptology, Proceed-
ings of EUROCRYPT’96, LNCS n◦ 1070, Springer Verlag, 1996, pp. 33-48.

[8] Quartz, submitted to Nessie European call for cryptographic primi-
tives http://www.cryptonessie.org. The official web page of Quartz is
http://www.minrank.org/quartz/.

[9] The HFE cryptosystem web page: http://hfe.minrank.org

16

9 Appendix - Changes to Quartz.

The Quartz signature scheme has modified, as allowed in the second stage of Nessie
evaluation process. In some papers that refer to the old version, it is sometimes called
Quartzv1, and Quartzv2 is the new final version. The only official version of Quartz is
now Quartzv2 that can be called just Quartz.

In this section we summarize the changes, which is aimed at readers and developers
that are acquainted with the previous version Quartzv1. It requires the knowledge of
the previous version of Quartz. Both in the first version of specification (Quartzv1),
as well as in the main part of the present document (above) that specifies completely
Quartzv2, we used the same notations.
We note that the key generation has not changed, the signature computation has
changed, and the signature verification has changed slightly.

9.1 Changes in message hashing

The following was done in the previous version that computes the Hi:

M1 = SHA-1(M),

M2 = SHA-1(M1),

M3 = SHA-1(M2).

The next step was (it has not changed): to derive H1, H2, H3 and H4 as four 100-bit
strings defined by:

H1 = [M1]0→99, H2 = [M1]100→159||[M2]0→39,

H3 = [M2]40→139, H4 = [M2]140→159||[M3]0→79.

This cannot be considered as random, as from the first 160 bits of (H1,H2,H3,H4),
one can compute the remaining 240 bits. However it is necessary for the security proofs
of Quartz, see [3], that the joint distribution (H1,H2,H3,H4) behaves as a random
oracle. Therefore, the above computation of the Mi has been replaced by the following:

Let M0, M1, M2 and M3 be the three 160-bit strings defined by:

M0 = SHA-1(M),

M1 = SHA-1(M0||0x00),

M2 = SHA-1(M0||0x01).

M3 = SHA-1(M0||0x02).

In the above, exactly one 8-bit character is appended each time to M0.
The H1, H2, H3 and H4 are computed from the Mi as before.

9.2 Changes in inversion of FV

In the previous version of Quartzv1, we solve in Z the following equation (step 4f as on
page 7 of the present version):

FV (Z) = B.

In the previous version we only accepted if there was exactly one solution. In the
new version, we always accept if there are solutions. There remains to see which solution
is chosen. For this in Quartzv2 we write all the solutions A(1), A(2), .., A(δ) and we
hash each solution I(i) = SHA-1(A(i)). Let A be the A(i) that gives the smallest hash

17

I(i) in the big-endian ordering: we compare the first character in memory, then the
second etc.

This change allows Quartz signatures to be about 40 % faster. This is because the
probability of success for solving the above equation FV (Z) = B is now 1 − 1

e ≈ 0.63

instead of 1
e ≈ 0.38 previously, and therefore we have to do about

1
e

1− 1
e

≈ 0.58 times as
much tries, i.e. about 40% less.
We also note that the new method decreases the probability that there is no signature
for a given message from 2−83 previously, to 2−183. Since all the messages are hashed on
160 bits, we may consider for most Quartz secret/public key pairs, there is no message
that has no signature, and for other keys, such message will never be found.

18

