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Abstract

Steganography is used to hide the occurrence of communication. Recent suggestions in US newspapers
indicate that terrorists use steganography to communicate in secret with their accomplices. In particular,
images on the Internet were mentioned as the communication medium. While the newspaper articles
sounded very dire, none substantiated these rumors.

To determine whether there is steganographic content on the Internet, this paper presents a detec-
tion framework that includes tools to retrieve images from the world wide web and automatically detect
whether they might contain steganographic content. To ascertain that hidden messages exist in images, the
detection framework includes a distributed computing framework for launching dictionary attacks hosted
on a cluster of loosely coupled workstations. We have analyzed two million images downloaded from eBay
auctions but have not been able to find a single hidden message.
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1 Introduction

Steganography is the art and science of hiding the
fact that communication is taking place. Stegano-
graphic systems can hide messages inside of images
or other digital objects. To a casual observer in-
specting these images, the messages are invisible.

In February 2000, USA Today reported that terror-
ists are using steganography to hide their communi-
cation from law enforcement [4]. The article lacked
any technical information that would allow a reader
to verify these claims. Nonetheless, the article was
echoed by a number of other news sources. Accord-
ing to them, messages are being hidden in images
posted to Internet auction sides like eBay or Ama-
zon.

To assess the claim that steganographic content is
regularly posted to the Internet, we need a way to
detect steganographic content in images automati-
cally. This paper presents a steganography detec-
tion framework that begins with a web crawler that
downloads JPEG images from the Internet. Using
statistical analysis, a subset of images likely to con-
tain steganographic content is identified. The anal-
ysis is statistical, i.e. there is no guarantee that an
identified image really contains a hidden message,
so we also describe a distributed computing frame-
work that launches a dictionary attack hosted on a
cluster of loosely-coupled workstations to reveal any
hidden content.

We discuss the results from analyzing two million
images downloaded from eBay auctions. So far we
have not been able to find a single message.

The remainder of this paper is organized as follows.
In Section 2, we give a brief background of steganog-
raphy in general. Section 3 explains how to hide in-
formation in JPEG [15] images. Section 4 presents
statistical test capable of detecting steganographic
content. In Section 5, we give an overview of ex-
isting steganographic systems and describe how to
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detect them. The detection framework is presented
in Section 6. We discuss our results and related
work in Sections 7 and 8. We conclude in Section 9.

2 Steganography Background

The term “Information Hiding” relates to both wa-
termarking and steganography. Watermarking usu-
ally refers to methods that hide information in a
data object so that the information is robust to
modifications. That means, it should be impossi-
ble to remove a watermark without degrading the
quality of the data object.

On the other hand, steganography refers to hid-
den information that is fragile. Modifications to the
cover medium may destroy it.

Watermarking and steganography differ in another
important way: while steganographic information
must never be apparent to a viewer unaware of its
presence, this feature is optional for a watermark.

The security of a classical steganographic system
relies on the secrecy of the encoding system. Once
the encoding system is known, the steganographic
system is defeated. A famous example of a classical
system is that of a Roman general who shaved the
head of a slave and tattooed a hidden message on it.
After the hair had grown back, the slave was sent to
deliver the message [3]. While such a system might
work once, the moment that it is known, it is simple
to shave the heads of all people passing by to check
for hidden messages.

Other encoding systems might use the last word in
every sentence of a letter or the least significant bits
in an image.

However, modern steganography should be de-
tectable only if secret information is known, namely,
a secret key. This is very similar to “Kerckhoffs’
Principle” in cryptography, which holds that the se-
curity of a cryptographic system should rely only on
the key material [5].



Because of their invasive nature, steganographic
systems leave detectable traces within a medium’s
characteristics. This allows an eavesdropper to de-
tect modified media, revealing that secret communi-
cation is taking place. Although the secret content
is not exposed, its existence is revealed, which de-
feats the main purpose of steganography.

In general, the information hiding process consists
of the following steps:

1. Identification of redundant bits in a cover
medium. Redundant bits are those bits that
can be modified without degrading the quality
of the cover medium.

2. Selection of a subset of the redundant bits to
be replaced with data from a secret message.
The stego medium is created by replacing the
selected redundant bits with message bits.

The modification of redundant bits can change the
statistical properties of the cover medium. As a re-
sult, statistical analysis may reveal the hidden con-
tent [11, 16]. In Section 4, we explain in detail how
this is possible.

3 Information Hiding in JPEG Im-
ages

JPEG images [15] are commonly used on Internet
web sites. This section briefly explains the JPEG
format and how it can be used for information hid-
ing.

The JPEG image format uses a discrete cosine
transform (DCT) to transform successive 8×8-pixel
blocks of the image into 64 DCT coefficients each.
The least-significant bits of the quantized DCT co-
efficients are used as redundant bits into which the
hidden message is embedded.

In some image formats, e.g. GIF, the visual struc-
ture of an image exists to some degree in all bit-
layers of the image. Steganographic systems that
modify least-significant bits of these image formats
are often susceptible to visual attacks [16].

This is not true for the JPEG format. The modifica-
tion of a single DCT coefficient affects all 64 image
pixels. For that reason, there are no known visual
attacks against the JPEG image format.

Figure 1 shows two images with a resolution of
800×600 and 24-bit color depth. The uncompressed
original image has a size of almost 12 Mb, while the

two JPEG images shown are about 0.3 Mb. The one
to the left is unmodified. The one to the right con-
tains the first chapter of Lewis Carroll’s “The Hunt-
ing of the Snark.” After compression, the chapter
has a size of about 14, 700 bits. It is not possible for
the human eye to find a visual difference between
the two of them.

4 Statistical Analysis

Statistical tests can reveal if an image has been
modified by steganography by testing whether an
image’s statistical properties deviate from a norm.
Some tests are independent of the data format and
just measure the entropy of the redundant data.

The simplest test measures the correlation towards
one. A more sophisticated one is Ueli Maurer’s
“Universal Statistical Test for Random Bit Gener-
ators” [7]. We expect images with hidden data to
have a higher entropy than those without.

These simple tests are not able to decide automati-
cally if an image contains a hidden message. West-
feld and Pfitzmann have observed that embedding
encrypted data into a GIF image changes the his-
togram of its color frequencies [16]. One property
of encrypted data is that the one and the zero bit
are equally likely. When using the least-significant
bit method to embed encrypted data into an im-
age that contains the color two more often than the
color three, the color two is changed more often to
the color three than the other way around. As a re-
sult, the difference in color frequency between two
and three has been reduced by the embedding.

The same is true for JPEG images. Instead of
measuring the color frequencies, we analyze the fre-
quency of the DCT coefficients. Figure 2 shows an
example where embedding a hidden messages causes
noticeable differences to the DCT coefficient his-
togram.

We use a χ2-test to determine whether an image
shows distortion from embedding hidden data. Be-
cause the test uses only the stego medium, the ex-
pected distribution y∗i for the χ2-test has to be com-
puted from the image. Let ni be the frequency of
DCT coefficients in the image. We assume that an
image with hidden data embedded has similar fre-
quency for adjacent DCT coefficients. As a result,
we can take the arithmetic mean,

y∗i =
n2i + n2i+1

2
,



Figure 1: The image on the left is the unmodified original, but the image on the right has the first chapter
of the “Hunting of the Snark” embedded into it. There are no visual differences to the human eye.
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Figure 2: Embedding a hidden message causes no-
ticeable changes to the histogram of DCT coeffi-
cients.

to determine the expected distribution. The ex-
pected distribution is compared against the ob-
served distribution

yi = n2i.

The χ2 value for the difference between the distri-
butions is given as

χ2 =
ν+1∑
i=1

(yi − y∗i )2

y∗i
,

where ν are the degrees of freedom, that is, the num-
ber of different categories in the histogram minus
one.

The probability of embedding p is then given by the
complement of the cumulative distribution function,

p = 1−
∫ χ2

0

t(ν−2)/2e−t/2

2ν/2Γ(ν/2)
dt,

where Γ is the Euler Gamma function.
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Figure 3: The probability of embedding calculated
for different areas of an image. The upper graph
shows the results for an unmodified image, the lower
graph shows the results for an image with stegano-
graphic content.

We can compute the probability of embedding for
different parts of an image. The selection depends
on what steganographic system we try to detect.
For an image that does not contain any hidden in-
formation, we expect the probability of embedding



to be zero everywhere. Figure 3 shows the em-
bedding probability for an image without stegano-
graphic content and for an image that has content
hidden in it.

5 Steganographic Systems in Use

In this section, we present several steganographic
systems that embed hidden messages into JPEG im-
ages. We show that the statistical distortions de-
pend on the steganographic system that inserted
the message into the image. Because the distor-
tions are characteristic for each system, we develop
signatures that allow us to identify which system
has been used.

There are three popular steganographic systems
available on the Internet that hide information in
JPEG images:

• JSteg, JSteg-Shell

• JPHide

• OutGuess

All of these systems use some form of least-
significant bit embedding and are detectable by sta-
tistical analysis except the latest release of Out-
Guess [9]. In the following, we present the specific
characteristics of these systems and show how to
detect them.

5.1 JSteg and JSteg-Shell

JSteg is an addition by Derek Upham to the Inde-
pendent JPEG Group’s JPEG Software library. The
DCT coefficients are modified continuously from the
beginning of the image. JSteg does not support en-
cryption and has no random bit selection.

The data of the message is prepended with a vari-
able size header. The first five bits of the header
express the size of the length field in bits. The fol-
lowing bits contain the length field that expresses
the size of the embedded content.

Figure 4 shows the result of the χ2-test for an image
that contains information hidden with JSteg. In this
case, the first chapter of “The Hunting of the Snark”
has been bzip2 compressed before the embedding.
The low probability at the beginning of the graph is
caused by the dictionary at the beginning of a bzip2
compressed file. The dictionary does not look like
encrypted data and is not detected by the test.
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Figure 4: An image containing a message hidden
with JSteg shows a high probability of embedding
at the beginning of the image. It flattens to zero,
when the test reaches the unmodified part of the
DCT coefficients.

JSteg-Shell is a Windows user interface to JSteg. It
has been developed by Korejwa and supports en-
cryption and compression of the content before em-
bedding the data with JSteg. JSteg-Shell uses the
stream cipher RC4 [13] for encryption. However,
the RC4 key space is restricted to 40 bits.

When encryption is being employed, we expect the
probability of embedding to be high at the begin-
ning of the image. There should be no exception.
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Figure 5: Using JSteg-Shell with RC4 encryption
causes the probability of embedding to be high for
all embedded data.

An example of JSteg-Shell is shown in Figure 5.
Just observing the graph allows us to determine the
size of the embedded message. We show later how
this can help to improve the automatic detection of
steganographic content.

5.2 JPHide

JPHide is a steganographic system by Allan
Latham. There are two versions: 0.3 and 0.5. Ver-
sion 0.5 supports additional compression of the hid-
den message. As a result, they use slightly different
headers to store embedding information. Before the
content is embedded, it is Blowfish [12] encrypted
with a user-supplied pass phrase.



Because the DCT coefficients are not selected con-
tinuously from the beginning, JPHide is slightly
more difficult to detect. The program uses a fixed
table that determines which coefficient to mod-
ify next. The coefficients are selected by the ta-
ble in such a way that coefficients that are likely
to be numerically high are used first. A pseudo-
random number generator determines if coefficients
are skipped. The probability of skipping bits de-
pends on the length of the hidden message and how
many bits have been embedded already.

JPHide not only modifies the least-significant bits of
the DCT coefficients, it can also switch to a mode
where the second-least-significant bits are modified.
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Figure 6: JPHide has a signature similar to JSteg.
The major difference is the order in which the DCT
coefficients are modified.

Figure 6 shows the probability of embedding for an
image containing information hidden with JPHide.
Because JPHide can skip DCT coefficients, the
probability is not as high as with JSteg.

5.3 Outguess

OutGuess is a steganographic system available as
UNIX source code. There are two released versions:
OutGuess 0.13b, which is vulnerable to statistical
analysis, and OutGuess 0.2, which includes the abil-
ity to preserve statistical properties [11] and can not
be detected by the statistical tests used in this pa-
per.

OutGuess is different from the systems described in
the previous sections in that its chooses the DCT co-
efficients with a pseudo-random number generator.
A user-supplied pass phrase initializes a stream ci-
pher and a pseudo-random number generator, both
based on RC4. The stream cipher is used to encrypt
the content.

Because the modifications are distributed randomly
over the DCT coefficients, the χ2-test can not be
applied on a continuously increasing sample of the

image. Instead, we slide the position where we take
the samples across the image.
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Figure 7: OutGuess 0.13b is more difficult to detect.
Due to the random selection of bits, there is no clear
signature.

For OutGuess 0.13b, we do not find any clear signa-
tures. Figure 7 shows the probability of embedding
for a sample image. The spikes indicate areas in
the image where modifications to coefficients cause
departures from the expected DCT coefficient fre-
quency.

6 Detection Framework

In the previous section, we presented detection sig-
natures that allow us to find hidden messages and
determine which steganographic system was used
to embed them. In the next section, we present
“Stegdetect,” an automated utility to analyse JPEG
images for steganographic content.

6.1 Stegdetect

Stegdetect detects images that have content hidden
with JSteg, JPHide and OutGuess 0.13b. For each
system that we want to detect, we select the DCT
coefficients in the order that they are modified and
apply a χ2-test.

misc/0003-wonder-2.jpg : jphide(*)

misc/dscf0001.jpg : outguess(old)(***)

misc/dscf0002.jpg : negative

misc/dscf0003.jpg : jsteg(***)

Figure 8: The output from Stegdetect contains an
estimate of the detection confidence.

The output from Stegdetect lists the steganographic
systems found in each image or “negative” if no
steganographic content could be detected. Stegde-
tect expresses the level of confidence of the detection



with one to three stars. Figure 8 shows some sample
output.

6.1.1 JSteg Detection

Detection of content hidden with JSteg is similar
to the approach outlined by Westfeld and Pfitz-
mann [16].

JSteg does not modify the DCT coefficients zero and
one. For that reason, they are ignored in the χ2-
test. We sample the DCT coefficients starting from
the beginning of the image and compute the prob-
ability of embedding. This process is repeated with
increasing sample size until all DCT coefficients are
contained in the sample. As a performance opti-
mization, we stop computing the probability of em-
bedding once it falls below a certain threshold.

To improve the detection accuracy, we estimate the
size of the hidden content from the calculated graph
and compare it with the size stored in the JSteg
embedding header as described in Section 5.1.

6.1.2 JPHide Detection

Because JPHide modifies the DCT coefficients in
a fixed order determined by a table, we rearrange
the coefficients in that order before computing the
probability of embedding. However, there are two
exceptions that influence the detection.

JPHide modifies the DCT coefficients −1, 0 and 1 in
a special way. As a result, the modifications to these
coefficients can not be detected by the χ2-test. How-
ever, simply ignoring these coefficients still allows us
to detect content embedded with JPHide. We also
ignore modifications to the second-least-significant
bits, which are not as frequent as modifications to
the least-significant bits.

Similar to JSteg, we stop computing the probability
of embedding once it falls below a certain threshold.

6.1.3 OutGuess Detection

Detecting content embedded with OutGuess 0.13b
is complicated by the fact that the coefficients are
selected pseudo-randomly, there is no fixed order in
which to apply the χ2-test. However, Provos has
shown that the χ2-test can be extended to detect
content hidden with OutGuess 0.13b [11].

Instead of increasing the sample size and applying
the test at a constant position, we use a constant

sample size but slide the position where the samples
are taken over the entire range of the image.

The test starts at the beginning of the image, and
the position is incremented by one percent for every
application of the χ2-test. The extended test does
not react to an unmodified image, but detects the
embedding in some areas of the stego image.

To find an appropriate sample size, we choose an
expected distribution for the extended χ2-test that
should cause a negative test result. Instead of calcu-
lating the arithmetic mean of coefficients and their
adjacent ones, we take the arithmetic mean of two
unrelated coefficients,

y∗i =
n2i−1 + n2i

2
.

A binary search on the sample size is used to find a
value for which the extended χ2-test does not show
a correlation to the expected distribution derived
from unrelated coefficients.

6.1.4 Stegdetect Performance

In this Section, we analyse the performance of
Stegdetect on a 333 MHz Celeron processor by mea-
suring the time it takes to process a few hundred
JPEG files. The result is the average number of
kilobytes that can be processed per second (KBps).

We test the performance separately for each
steganographic system, and then measure the per-
formance for all tests in concert.

Test Speed
JSteg 356 KBps

JPHide 200 KBps
OutGuess 0.13b 227 KBps

All tests 127 KBps

Figure 9: Stegdetect performance on a 333 MHz
Celeron processor.

The results are displayed in Figure 9. As expected,
the JSteg test is the fastest and detection of JPHide
and OutGuess 0.13b are about the same speed.

Given the results for the separate tests, we would
expect the combined speed for all tests to be about
80 KBps. However, the speed is higher because the
tests for JPHide and Outguess are skipped if JSteg
has been detected.

To calibrate the detection sensitivity of Stegdetect,
we tested it on about 1, 500 images taken with a Fuji



MX-1700 digital camera. The results are shown in
Figure 10. For images of this quality, we do not find
any false positives.

The percentage of false negatives depends on the
steganographic system and the size of the embedded
message. The smaller the message, the harder it is
to detect by statistical means. Stegdetect is very re-
liable in finding images that have content embedded
with JSteg. For our sample images, we found only
around 2% false negatives. For JPHide, between
15% and 60% were false negatives. JPHide 0.5 is
more difficult to detect because it compresses the
content before embedding. The rate of false nega-
tives for OutGuess 0.13b is around 60%. The false
negative rate is quite high. However, this is prefer-
able to a high false positive rate, as we will explain
in the next Section.

Test False Negatives
JSteg 2%

JPHide 15%− 60%
OutGuess 0.13b 60%

Figure 10: Percentage of false negatives for a set of
sample images.

6.2 Finding Images

Now that we can automatically test for stegano-
graphic content, we are ready to search for images
that might have hidden messages embedded. The
obvious locations to look for images are web sites
on the Internet. A web crawler that finds JPEG
images can supply Stegdetect with enough data.

Unfortunately, there were no open-source, image ca-
pable web crawlers available when we started our
research, so we added the capability to save images
to existing web crawlers, like larbin or the web con-
sortium’s web robot. However, none of them were
stable enough to crawl large web sites reliably.

So we wrote “Crawl”, a simple but efficient web
crawler that saves JPEG images it encounters on
web pages. Using “libevent” [10], a library for asyn-
chronous event notification, Crawl is implemented
in fewer than 5,000 lines of C source code.

Crawl performs a depth-first search and has the fol-
lowing features:

• Images and web pages can be matched against
regular expressions. A match can be used to
include or exclude web pages in the search.

• Minimum and maximum image size can be
specified. This allows us to exclude images that
are too small to contain hidden messages. We
restricted our search to images that were larger
than 20 KByte but smaller than 400 KByte.

• DNS requests are synchronous but cached.
Synchronous DNS queries can be a major
performance penalty because they cause the
crawler to block and not to make progress
on any other outstanding network connections.
The effects are mitigated by caching positive
and negative query results.

HEAD http://img.andale.com/635/monitor_lo.jpg

HEAD http://img.andale.com/635/hi.jpg

GET http://www.cities.com/a_ports/graphone.jpg

GET http://img.andale.com/635/scope_lo.jpg

Terminated with 3479 saved urls.

448684 GET for body 2861924 Kbytes

436084 HEAD for header 271287 Kbytes

9.172 Requests/sec

Figure 11: The output from Crawl is used as input
for Stegdetect.

At this writing, we have downloaded more than two
million images linked to eBay auctions. To auto-
mate the detection, Crawl uses “stdout” to report
successfully retrieved images; see Figure 11.

Because Stegdetect can accept images from “stdin”,
we connect Crawl to Stegdetect via a pipe to auto-
mate the detection process. After processing the
two million images with Stegdetect, we find that
over 1% of all images seem to contain hidden con-
tent. JPHide is detected the most; see Figure 12.

Test False Positives
JSteg 0.003%

JPHide 1%
OutGuess 0.13b 0.1%

Figure 12: Percentage of (false) positives for images
obtained from the Internet.

Most of these are likely to be false positives. Ax-
elsson applies the “Base-Rate Fallacy” to intrusion
detection systems and shows that a high percent-
age of false positives has a significant impact on
the efficiency of such a system [1]. The situation
is very similar for Stegdetect. It is safe to assume,
that the percentage of images containing stegano-
graphic content is low in comparison to the percent-
age of false positives. As a result, the “true positive”



rate, i.e. the probability that an image detected by
Stegdetect really has steganographic content, is in-
fluenced mostly by the false positive rate.

We notice that there are special classes of images for
which Stegdetect falsely indicates hidden content.
An example of a false positive is shown in Figure 13.
Stegdetect indicates that content has been hidden
by JSteg. However, when analyzing the probability
of embedding displayed next to the drawing, we do
not see a plateau at the beginning, as we would
expect had encrypted data been embedded.

We find similar false positives when trying to detect
content hidden with OutGuess. Images with mono-
tone backgrounds like the painting in Figure 14 are
more likely to be false positive. When analyzing the
graph, we see only a few high probability spikes. If
there were hidden content, we would expect to find
more areas in the image where the extended χ2-test
shows a positive result.

That Stegdetect finds so many images that seem
to have content hidden with JPHide does not in-
dicate that there are many images that really con-
tain hidden content. Instead, it means that the de-
tection functions for JPHide need to be improved
to be more accurate. Furthermore, many images
downloaded from the Internet are of very low qual-
ity, while the images that were used to calibrate
Stegdetect are of higher quality, because they come
directly from a digital camera.

6.3 Verifying Hidden Content

The statistical tests used to find steganographic con-
tent in images indicate nothing more than a likeli-
hood that content has been embedded. Because of
that, Stegdetect can not guarantee the existence of
a hidden message.

To verify that the detected images have hidden con-
tent, it is necessary to launch a dictionary attack
against the JPEG files. Stegbreak does just that for
content hidden with JSteg-Shell, JPHide or Out-
guess 0.13b.

Because all the presented steganographic systems
hide content based on a user supplied password, an
attacker can try to guess the password to determine
what content has been hidden. Instead of trying
all possible passwords, it is much faster to try only
words from dictionary, i.e. a dictionary attack [8].

For a dictionary attack to work, it is necessary that
the user of the steganographic system selects a weak
password, i.e. he selects the password from a small
subset of the full password space.

Key attacks on cryptographic systems often have
the benefit that properties of the underlying plain-
text are known to the attacker. Given these prop-
erties, it is possible to verify statistically if the cor-
rect decryption key has been found [14]. All the
steganographic systems presented in this paper em-
bed header information in addition to a message
into the images. The header information contains,
among other things, the length of the hidden mes-
sage. We can use this information to verify the cor-
rectness of the guessed password.

6.3.1 JPHide Header Information

IV 5IV 2 IV 3 IV 4

Length bits 23-16 Length bits 15-8 Length bits 7-0 IV 1

Figure 15: Header information for JPHide 0.3.

JPHide 0.3 embeds a 64-bit header. The first 24
bits include the length of the hidden message in
bytes. The other 40 bits are obtained from encrypt-
ing the first eight DCT coefficients with Blowfish.
The Blowfish key schedule is initialized with the
guessed password. JPHide takes the first eight DCT
coefficients, reduces them modulo 256 and then con-
catenates to get a 64-bit block. This block is then
encrypted, and the first 3 bytes are overwritten
with the length information. The result is stored
as header in the image; see Figure 15.

The dictionary attack uses the 40-bit IV as a verifier.
Additionally, we can check if the encoded length fits
in the image.

IV 4

IV 3

IV 5 IV 6 IV 7

Compressed length bits 23-0 Mode

Orig. Len. bits 15-8

Orig. Len. bits 23-16

Orig. Len bits 7-0

IV 1 IV 2

Compressed length bits 15-0

Figure 16: Header information for JPHide 0.5.

The header for JPHide 0.5 is twice as long as
for JPHide 0.3; because JPHide 0.5 compresses
the message before embedding, the header contains
both the compressed and the original length of the
message. With the increased header length, we get
a 56-bit verifier. The IV is obtained by encrypting
the first 16 DCT coefficients, and is then overwrit-
ten with the length information. In addition, to the
56 bits, we also get 16 more bits to verify our guess
because parts of the compressed length have been
duplicated in the header; see Figure 16.
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Figure 13: Stegdetect indicates that this drawings seems to have content hidden with JSteg.
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Figure 14: Stegdetect indicates that this painting seems to have content hidden with Outguess 0.13b.

Another difference between version 0.3 and 0.5 is a
change in key schedule computation. In version 0.5,
the Blowfish key schedule depends on the first eight
DCT coefficients. As a result, the Blowfish key
schedule has to be recomputed for images that dif-
fer in those DCT coefficients. This causes a marked
slowdown in Stegbreak.

6.3.2 JSteg-Shell Header Information

JSteg-Shell is very simple. Because, it is just a user
interface to JSteg, it does not encrypt the length of
the embedded message. Instead it adds a signature
at the end of the message. The signature is either
“korejwa”, “cMk4” or “cMk5”.

We get at least 32 bits of certainty that we guessed
the right password. However, because the key size is
restricted to 40 bits, it is feasible to search the whole
key space instead of using a dictionary attack.

6.3.3 OutGuess Header Information

Dictionary attacks against OutGuess seem to be in-
feasible, because we lack information to verify the
password guess. OutGuess stores a 32-bit header in
front of the embedded message. The header con-
tains a 16-bit seed and 16 bits containing the length
of the following message in bytes. We can use only
the length to verify our password guess, because the
seed can be an arbitrary number. While it is pos-
sible to restrain the acceptable seed or include a
minimum length check in the password verification,
there are still many keys that pass the verification.

As an additional check, Stegbreak retrieves
512 bytes of the encrypted message and checks the
retrieved bytes for randomness. The simplest and
fastest check is to count the number of zero and one
bits. If there are close to 50% one bits then the data
seems likely to be random. We further increase the
accuracy by applying some simple statistical tests to
the data. However, 512 bytes of data is not enough
for a thorough test. For a large dictionary, we still



find too many candidate passwords, making a dic-
tionary attack infeasible.

6.3.4 Stegbreak Performance

System Speed
JPHide 15,000 words/s

OutGuess 0.13b 47,000 words/s
JSteg 112,000 words/s

Figure 17: Stegbreak performance on a 1200 MHz
Pentium III.

We measure the performance of Stegbreak on a
1200 MHz Pentium III. The results are shown in
Figure 17. For JPHide, we can check about 15,000
words per second. A test run with 300 images and
a dictionary of about 577,000 words takes ten days
to complete. Stegbreak is slow because it has to
check for both versions of JPHide. When checking
for version 0.5, the Blowfish key schedule needs to
be recomputed for almost every image.

Stegbreak is faster for OutGuess: it can check about
47,000 words per second. However, as explained
above, with a large dictionary the tool finds can-
didate passwords for every image.

For JSteg-Shell, we can check about 112,000 words
per second. This is fast enough to run a dictionary
attack on a single computer. However, because the
key space is restricted to 40 bits, it makes more
sense to do a brute-force search of the whole key
space. The key space is reduced to 40 bits in such
a way that effectively only 35 bits are used. On a
1200 MHz Pentium III, a brute-force key search of
the 35-bit key space completes within four days.

6.4 Distributed Dictionary Attack

As we have seen, Stegbreak is too slow to run a
dictionary attack against JPHide on a single com-
puter. However, because dictionary attack is inher-
ently parallel, it is possible to distribute the dictio-
nary attack to a number of workstations.

Such a distributed computing framework should
work on a cluster of loosely-couple workstations that
fulfills the following requirements:

• The setup and maintenance of jobs should be
simple.

• It should be portable to many operating sys-
tems, so that we can use as many different com-
puter systems as possible.

• All communication should be encrypted and
authenticated.

• The system should not require “root” privileges
for installation.

Because such a system was not available as open-
source, we developed “Disconcert.”

Disconcert uses libevent for asynchronous event no-
tification and “libio”, a library especially developed
for use with disconcert. Libio abstracts communica-
tion into data sources and data sinks. A data source
is connected to a data sink via multiple filters. Us-
ing this abstraction, encryption and authentication
just become filters. Disconcert has fewer than 7,000
lines of source code.

In the following, we explain a few essential com-
mands that Disconcert supports:

• The init command transfers files to selected
clients. It is used to copy Stegbreak, word lists
and image files to the remote computers.

• The job command sets up various parameters
for a specific job. This includes the number of
work units that should be completed and the
command line to be executed on the client ma-
chines.

• The run command is used to start remote exe-
cution of a job. Disconcert sets the “nice” level
for these jobs to ten, so that they do not irritate
the users of the workstation.

Clients send the exit status of a terminated pro-
cess to the server to indicate if a work unit has
been completed successfully or not. To commu-
nicate password guesses or other messages to the
server, “stdout” and “stderr” are redirected to files
on the server.

If a client loses its connection to the server, all com-
munication is buffered until the client can reconnect.
If a client does not reconnect within a certain time
frame, the server reassigns the work unit of that
client to another machine. The disconcert frame-
work also supports multiple jobs at the same time.

At this writing, Stegbreak is running on sixty
clients, ten of them at the Center for Information
Technology Integration and fifty on other machines
at the University of Michigan.



To prevent transmission of objectionable content
(such as pornographic images) to the clients,
Stegbreak can extract the information from the
JPEG images that is relevant to a dictionary at-
tack and save it as a separate file. For JPHide, the
dictionary attack requires only about 512 bytes to
verify a password guess. Another benefit of this is
a reduction of network traffic.

Stegbreak has very low I/O and memory require-
ments and is hardly noticeable when running in the
background.

The total performance when trying to find content
hidden by JPHide is about 200,000 words per sec-
ond. This is 15 times faster than running on a sin-
gle 1200 MHz Pentium III. The slowest client con-
tributed 471 words per second to the job, the fastest
12,504 words per second. The average performance
of a workstation is around 3,900 words per second.

7 Discussion

At this writing, Crawl has downloaded over two mil-
lion images from eBay auctions. For these images,
Stegdetect indicates that about 17,000 seem to have
steganographic content. Of these 17,000 images,
15,000 supposedly have content hidden by JPHide.
All 15,000 images have been processed by Stegbreak.

While Stegbreak has been running on a cluster of
60 machines, it is still too slow to process all images
that Stegdetect finds. We hope that we will have
access to more and better machines in the future.

To verify the correctness of all participating clients,
we insert tracer images into every Stegbreak job.
As expected the dictionary attack finds the correct
passwords for these images. However, so far we have
not found a single genuine hidden message. We offer
three possible explanations to support our results:

• There is no significant use of steganography on
the Internet.

• Nobody uses steganographic systems that we
can find.

• All users of steganographic systems carefully
choose passwords that are not susceptible to
dictionary attacks.

Even if the majority of passwords used to hide con-
tent were strong, there would be a small percentage
of weak passwords, e.g. a study conducted by Klein
found nearly 25% of all passwords vulnerable [6].

Weak passwords are susceptible to a dictionary at-
tack and we should have been able to find them.
Similarly, even if most of the steganographic sys-
tems used to hide messages were undetectable by
our methods, we still should find some images with
hidden messages from detectable systems. The most
likely explanation is that there is no significant use
of steganography on the Internet.

The popular press claims that steganographic mes-
sages are hidden in images on eBay, Amazon and
on “pornographic bulletin boards.” So far, we have
looked only at images obtained from eBay. Very
soon, we will examine content from USENET im-
age groups. Given the high number of false positive
images that we found, we also plan to improve the
accuracy of Stegdetect.

8 Related Work

Fridrich et al. analyze the security of steganographic
systems that embed information in the LSB of color
images [2]. They find that the number of pairs of
“very close” colors increases when hidden messages
have been embedded. While they are able to detect
steganographic content, they are not able to differ-
entiate between steganographic systems.

9 Conclusion

Steganography can be used for hidden communica-
tion. There are widely reported rumors that images
on auction sites contain hidden messages. To ver-
ify these claims, we developed new techniques and
software to find hidden messages on the Internet:

• Stegdetect allows us to automatically detect
steganographic content in JPEG images.

• Crawl is an efficient web crawler that saves
JPEG images from web pages that it encoun-
ters.

• Stegbreak launches dictionary attacks against
steganographic systems to test whether content
is indeed hidden in an image.

• Disconcert is a distributed computing frame-
work for a cluster of loosely-coupled worksta-
tions used to distribute the dictionary attacks.



Even though we analyzed two million images that
we obtained from eBay auctions, we are unable to
report finding a single hidden message.

All software is freely available as source code and
can be downloaded from www.outguess.org and
www.citi.umich.edu/u/provos/.
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