
The Design and Analysis of Graphical Passwords

Ian Jermyn

New York University

jermyn@cs.nyu.edu

Alain Mayer, Fabian Monrose, Michael K. Reiter

Bell Labs, Lucent Technologies

falain,fabian,reiterg@research.bell-labs.com

Aviel D. Rubin

AT&T Labs|Research

rubin@research.att.com

Abstract

In this paper we propose and evaluate new graphical

password schemes that exploit features of graphical
input displays to achieve better security than text-
based passwords. Graphical input devices enable
the user to decouple the position of inputs from the
temporal order in which those inputs occur, and we
show that this decoupling can be used to generate
password schemes with substantially larger (memo-
rable) password spaces. In order to evaluate the se-
curity of one of our schemes, we devise a novel way
to capture a subset of the \memorable" passwords
that, we believe, is itself a contribution. In this work
we are primarily motivated by devices such as per-
sonal digital assistants (PDAs) that o�er graphical
input capabilities via a stylus, and we describe our
prototype implementation of one of our password
schemes on such a PDA, namely the Palm PilotTM.

1 Introduction

For the vast majority of computer systems, pass-
words are the method of choice for authenticating
users. It is well-known, however, that passwords
are susceptible to attack: users tend to choose pass-
words that are easy to remember, and often this
means that they are also easy for an attacker to
obtain by searching for candidate passwords. In
one case study of 14,000 Unix passwords, almost

25% of the passwords were found by searching for
words from a carefully formed \dictionary" of only
3� 106 words [12]. This relatively high success rate
is not unusual despite the fact that there are roughly
2 � 1014 8-character passwords consisting of digits
and upper and lower case letters alone.

In this paper we explore an approach to user au-
thentication that generalizes the notion of a textual
password and that, in many cases, improves the se-
curity of user authentication over that provided by
textual passwords. We design and analyze graphical
passwords, which can be input by the user to any
device with a graphical input interface. A graphi-
cal password serves the same purpose as a textual
password, but can consist, for example, of handwrit-
ten designs (drawings), possibly in addition to text.
The devices by which we are primarily motivated
are \personal digital assistants" (PDAs) such as the
Palm PilotTM, Apple NewtonTM, Casio Cassiopeia
E-10TM, and others, which allow users to provide
graphics input to the device via a stylus. More gen-
erally, graphical passwords can be used whenever a
graphical input device, such as a mouse, is available.

To the best of our knowledge, the notion of a
\graphical password" is due to Blonder [4]. That
work proposed a password scheme in which the user
is presented with a predetermined image on a visual
display and required to select one or more prede-
termined positions (\tap regions") on the displayed
image in a particular order to indicate his or her
authorization to access the resource. Beyond this

proposal, however, [4] did not further explore the
power of graphical passwords or argue security for
its particular proposal.

In this paper we considerably advance the theory
and practice of graphical passwords. We take as a
main criterion the need to evaluate graphical pass-
words' security relative to that of textual passwords.
We design two graphical password schemes that we
believe to be more secure than textual passwords
(and more secure than the scheme of [4]), and we
employ novel analysis techniques to make this argu-
ment. Moreover, we describe our implementation of
one of our graphical password schemes on the Palm
Pilot.

The graphical password schemes that we propose
derive their strength from the following observation:
a graphical interface for providing input enables the
user to decouple the positions of the inputs from
their temporal order. This is in contrast to textual
passwords input via a keyboard: here, the temporal
order in which the user types characters uniquely de-
termines their position in the password. However,
in a graphical password, e.g., consisting of several
drawn lines, the �nal position of each line can be
determined independently of the temporal order in
which the lines are drawn. We show that this in-
dependence between input position and order can
be used to build interesting new password schemes,
and in some cases obtain authentication that is con-
vincingly stronger than textual passwords but not
signi�cantly harder to remember.

The �rst graphical password scheme builds directly
on textual password schemes, by enhancing the in-
put of textual passwords using graphical techniques.
In this case, if we assume the same underlying distri-
bution on the choice of the password, the graphical
password is at least as strong as the textual pass-
word that underlies it, and even a conservative esti-
mate of the variations introduced by the graphical
input yields a substantial improvement in strength
over the purely textual version. We propose and
implement a second scheme, called \draw a secret"
(DAS), which is purely graphical; the user draws a
secret design (the password) on a grid. Here, to ar-
gue an improvement over textual passwords, we de-
�ne a class of DAS passwords that, we believe, cap-
tures a small subset of the memorable ones. This
class consists of those passwords that can be gen-
erated by a short program in a simple grid-based
language. We do not argue that every memorable
password has a short program to describe it, but

that passwords describable by short programs are
memorable. We show that even this subset of mem-
orable DAS passwords is larger than the dictionaries
of textual passwords to which a high percentage of
passwords typically belong.

Throughout this paper we focus on graphical pass-
words that are exactly repeatable by the user. This
distinguishes our work from all works on graphical
pattern recognition of which we are aware (see Sec-
tion 4), where it su�ces for the device to recog-
nize an input as being \su�ciently similar" to|but
not necessarily the same as|a previously stored in-
put. Because pattern recognition schemes require
the storage of (some representation of) the plain-
text password on the device, the password is vul-
nerable to an attacker who captures and probes the
device. In contrast, because graphical passwords are
repeatable, our schemes can derive a secret key, e.g.,
to encrypt and decrypt �les, without need to store
the password on the device. This protects both the
password and the encrypted content from the at-
tacker if the device falls into the attacker's hands.

The rest of this paper is outlined as follows: In Sec-
tion 2, we present textual passwords with graphi-
cal assistance. In Section 3, we proceed to purely
graphical passwords with a scheme called \draw-
a-secret" (DAS). Section 3.2 shows our design and
implementation of a memo pad encryption scheme
based on DAS. Section 3.3 proposes novel ways to
analyze and estimate the security of DAS and graph-
ical passwords in general. In Section 4 we overview
other password schemes, unrelated to graphical
passwords, but putting our work in a larger context.
Finally, Section 5 concludes.

2 Textual Passwords with Graphical
Assistance

In this section we present a password selection and
input scheme which uses textual passwords aug-
mented by some minimal graphical capabilities that
enable the decoupling of temporal order of input
and the position in which characters are input. This
scheme is interesting because it simply demonstrates
the power of graphical input abilities while yielding
a scheme that is convincingly stronger than textual
passwords are today.

We start by de�ning a normal, k-character textual

password as a total function � : f1; : : : ; kg ! A,
where A is the set of allowed characters for the tex-
tual password. Intuitively, the domain of � denotes
the temporal order of inputs, so that the user �rst
enters �(1), then �(2), and so on. That is, for a
password \tomato", we have �(1) = t, �(2) = o,
�(3) = m, �(4) = a, �(5) = t, and �(6) = o.

Now suppose that the user is presented with a sim-
ple graphical input display consisting of, say, eight
positions into which to enter a textual password,
as illustrated in Figure 1. In this �gure, step 0 is
the initial row of blanks, and steps 1{6 indicate the
temporal order in which the user �lls in the blanks;
i.e., �(i) is entered in row i. The password can
be placed in the \normal", left-to-right positions as
shown in Figure 1a. Due to the graphical nature
of the input interface, however, the user could enter
the password in other positions, as well. For ex-
ample, Figure 1b shows a modi�cation in which the
user enters the password in a left-to-right manner,
but starting from a di�erent initial position than the
leftmost. Figure 1c shows entering the password in
an \outside-in" strategy. And, of course, these vari-
ations can be combined in the obvious way, as shown
in Figure 1d.

Formally, a k-character graphical password in this
scheme can be de�ned by a total function �0 :
f1; : : : ; kg ! A � f1; : : : ;mg, where m � k is the
number of positions into which characters can be en-
tered (m = 8 in Figure 1). If �0(i) = (c; j), then this
means that the i-th entry (temporally) is the charac-
ter c in position j. A conventional textual password
�, entered in the standard left-to-right way, can be
expressed in this scheme as a graphical password
�0 where �0(i) = (�(i); i). But as shown in Fig-
ure 1, more generally we can have variations �0 in
which �0(i) = (�(i); j) and i 6= j. In fact, it is easy
to see that each k-character conventional password
� yields m!=(m � k)! graphical passwords �0, and
indeed this is the factor by which the size of the
graphical password space exceeds the k-character
conventional password space. This can be a rela-
tively large number: e.g., for k = 8 and m = 10,
this factor is approximately 2� 106.

Of course, there are far fewer than 2 � 106 varia-
tions of each 8-character password that are memo-
rable for human users. However, it is easy to derive
a convincing lower bound on the improvement this
achieves over a conventional password scheme. It is
conservative to assume that the m positional rota-
tions of a password, plus perhaps a handful of oth-

ers (e.g., reversal, outside-in, inside-out, evens-then-
odds, odds-then-evens), and combinations thereof,
are memorable, because the choices of position in-
volved in these cases can be derived from simple
algorithms that are more memorable than the posi-
tions themselves. (We will return to this character-
istic of memorability in the next section.) The at-
tacker's work load will thus be increased by a factor
of at leastm. An important feature of this scheme is
that it is at least as strong as the initial textual pass-
word that was chosen by the user, assuming that
users do not reduce the size of the space of char-
acter sequences that they choose in response to the
need to remember a positional order.

There are a number of steps that we can take to
make this scheme more usable. First, to maximize
the ease of inputting passwords with varied posi-
tion, each character should be echoed once the user
places it in a position, at least with a nondescript
character (e.g., \�") but preferably with the letter
itself. This is a departure from most password-input
interfaces, which echo at most a nondescript char-
acter in order to protect the password from onlook-
ing persons. However, for the platforms by which
we are primarily motivated, i.e., hand-held PDAs
such as the Palm Pilot, it is much easier to shield
the screen from onlookers entirely. Going further,
the interface might allow the user to �rst enter the
password \normally" (left-to-right), and then drag
each character to its �nal position.

Inevitably, there are numerous variations on the
scheme presented here. One direction includes ar-
ranging the k input positions in some other way
than a straight line (e.g., a grid), to promote other
variations in position. Rather than pursuing these
options here, we instead explore a purely graphical
approach.

3 The Draw-a-Secret (DAS) Scheme

In this section we present a purely graphical pass-
word selection and input scheme, which we call
\draw a secret" (DAS). In this scheme, the password
is a simple picture drawn on a grid. This approach is
alphabet independent, thus making it equally acces-
sible for speakers of any language. Users are freed
from having to remember any kind of alphanumeric
string.

0.
1. t
2. t o

3. t o m

4. t o m a

5. t o m a t

6. t o m a t o

0.
1. t

2. o t

3. o m t

4. o m a t

5. o m a t t

6. o m a t o t

(a) Left-to-right (b) Rotated left

0.
1. t
2. t o

3. t m o

4. t m a o

5. t m t a o

6. t m t o a o

0.
1. t

2. o t

3. m o t

4. m a o t

5. m t a o t

6. m t o a o t

(c) Outside-in (d) A more complex example

Figure 1: Variations on inputting tomato. The word tomato can be input in the \normal" left to right
manner as shown in (a). Step 0 is the initial row of blanks, and steps 1{6 indicate the temporal order in
which the user �lls in the blanks. In addition, however, the user can vary the position of the letters in
tomato. Figure (b) demonstrates shifting the input left by one, (c) represents an outside-in input strategy,
and (d) is the combination of these.

The most compelling reason for exploring the use
of a picture-based password scheme is that hu-
mans seem to possess a remarkable ability for re-
calling pictures (i.e., line drawings and real objects).
The \picture e�ect", that is, the e�ect of picto-
rial and object representations on a variety of mea-
sures of learning and memory has been studied for
decades [7, 27, 25, 30, 5]. Cognitive scientists have
shown that there is a substantial improvement of
performance in recall and recognition with pictorial
representations of to-be-remembered material than
for verbal representations.

Superiority in recall of objects over words in imme-
diate recall and over short retention intervals has
been demonstrated through a number of experi-
ments. Empirical evidence of the power of pictures
over words dates back to the 1800s; experiments
performed by Calkins [7] showed the recall of words
declining by 50% or more over a 72 hour retention
interval, and recall of objects dropping by less than
20% over the same period. Studies exhibiting strik-
ingly high di�erences in memory recall of pictures
over words have since been replicated on numerous
occasions [27, 30, 22, 6]. Some theories that have
been proposed to explain these experimental results
are outlined in Appendix A.

3.1 Password Selection and Input

Consider an interface consisting of a rectangular
grid of size G � G. Each cell in this grid is de-
noted by discrete rectangular coordinates (x; y) 2
[1::G] � [1::G]. Suppose that the the user is given
a stylus with which she can draw a design on this
grid. The drawing is then mapped to a sequence of
coordinate pairs by listing the cells through which
the drawing passes in the order in which it passes
through them, with a distinguished coordinate pair
inserted in the sequence for each \pen up" event,
i.e., whenever the user lifts the stylus from the draw-
ing surface. For example, consider the drawing in
Figure 2. Here, the coordinate sequence generated
by this drawing is

(2; 2); (3; 2); (3; 3); (2; 3); (2; 2); (2; 1); (5; 5)

where (5; 5) is the distinguished \pen up" indica-
tor. If there were a second stroke in this example,
then its sequence would be appended to the end
of the sequence above, and similarly for subsequent
strokes. In this way, we divide the space of possible
drawings into equivalence classes, two drawings be-
ing equivalent if they have the same encoding, or in
other words if they cross the same sequence of grid

cells, with the breaks between strokes occurring in
the same places.

3

4
56

2

1

1 2 3 4

3

4

1

2

Figure 2: Input of a graphical password on a 4� 4
grid. The drawing is mapped to a sequence of co-
ordinate pairs by listing the cells in the order which
the stylus passes through them, with a distinguished
coordinate pair inserted in the sequence whenever
the stylus is lifted from the drawing surface.

First we give some terminology. We de�ne the
neighbors, N(x;y), of a cell (x; y) to be the subset of
the set of cells f(x�1; y); (x+1; y); (x; y�1); (x; y+
1)g whose elements exist in the grid. We then de-
�ne a stroke to be a sequence of cells fcig, in which
ci 2 Nci�1 , and which does not contain a \pen up"
event. A password is then de�ned to be a sequence
of strokes separated by \pen up" events. The length
of a stroke is the number of coordinate pairs it con-
tains, while the total length of a password is the sum
of the lengths of its component strokes (excluding
the \pen up" characters).

As with the scheme of Section 2, this scheme is most
viable if the user's strokes are echoed as curves while
they are drawn. Again we appeal to the maneuver-
ability of the devices we are targeting (i.e., PDAs)
to support the restriction that the user must shield
the input display from onlookers.

Our requirement of repeatability constrains the pa-
rameters of this scheme. As long as the user's cur-
rent drawing lies in the same equivalence class as
the original drawing, she has successfully repeated
a chosen password. In general, this gives the user
su�cient tolerance when (involuntarily) varying the
drawing, provided that the cells of the grid are not
too small. Indeed, this was the purpose of separat-
ing the drawings into equivalence classes to begin
with. Di�culties might arise however, when the
user chooses a drawing that contains strokes that

pass too close to a grid-line. In those cases, the user
might vary the drawing in such a way as to change
the resulting sequence of coordinates. There are at
least two solutions to this problem: (1) The user is
o�ered to view the internal representation, depict-
ing the path of cells, when she chooses a password
so that she can con�rm which cells were actually
touched by the drawing. (2) The system does not
accept a drawing which contains strokes that are
located \too close" to a grid line. In the imple-
mentation, described in Section 3.2, we o�er both
alternatives.

3.2 Application of DAS: An Encryption
Tool for a PDA

Our graphical password schemes are motivated pri-
marily by PDAs that o�er graphical input capa-
bilities. We now describe our implementation of a
memo pad encryption tool for the Palm Pilot that
uses a user-input graphical password to derive the
encryption key. The Pilot supports a very natural
form of graphical input, and as such, provides an
ideal platform for implementing the DAS scheme.
Either of the schemes of Sections 2 and 3 could be
used to enter the password. Here we illustrate our
tool using the DAS scheme.

In our tool, an encryption/decryption key is de-
rived from a DAS password (i.e., its sequence of co-
ordinates) as follows: Let B be a bit string that
represents the sequence of coordinates (including
the unique \pen up" indicator). The key k is de-
�ned as k = h(B) where h is the cryptographic
hash function SHA-1. This key derivation assures
that two distinct coordinate sequences are trans-
formed (with high probability) into two distinct,
�xed-length keys. Triple-DES1 is then used to en-
crypt and decrypt data records stored on the PDA,
using keys derived from k.

Key selection is as follows: the user is prompted
with an empty grid to input the password design.
Once the password is entered, k is derived and a
pre-de�ned phrase p is encrypted (as Ek(p)) and
stored on the PDA. On repeat access, the user is
prompted again with the empty grid, upon which
she draws the same design. A symmetric key k0 is
derived and an attempt is made to decrypt Ek(p).
If it results in p, then k0 = k and the password

1Based on Ian Goldberg's port of SSLeay for the Pilot (see
http://www.isaac.cs.berkeley.edu/pilot).

(and key) is accepted. The user then can proceed
to encrypt/decrypt data records. k is deleted from
the PDA at the latest when the PDA is powered o�.

An adversary who captures the PDA can presum-
ably obtain all of the ciphertext encrypted under
k, and since p is either public or stored in plain-
text on the device, the adversary has at least one
known plaintext/ciphertext pair with which to at-
tack E. For a strong encryption scheme E, however,
the best bet for the attacker remains to guess the
original password, which, as we will show in Sec-
tion 3.3, on average is likely to be much harder than
if the attacker were faced with attacking a textual
password.

The interface for our DAS implementation is shown
in Figure 3. Our application shares the database
of the memopad application, and allows a user to
encrypt/decrypt records in the database based on a
user speci�ed drawing. The encryption tool for the
Palm Pilot is available from http://cs.nyu.edu/

fabian/pilot/gpw.html.

3.3 Security of the DAS Scheme

We de�ne the information content of a password
space as the entropy of the probability distribution
over that space given by the relative frequencies of
the passwords that users actually choose. Informa-
tion content is the correct measure for describing
di�culty of attack, since it determines the optimal
choices to be made when trying di�erent possibili-
ties for a password.

High information content renders a password
scheme more or less invulnerable. For example, if
users did in fact choose passwords uniformly from
the space of all textual passwords, successful attacks
would be extremely unlikely. What is it that ren-
ders such attacks successful in practice? There are
two factors. The �rst is that in reality users do not
choose their passwords uniformly. If we assume that
the data collected in Klein's study [12] is represen-
tative of the general population, then users in fact
use only 10�8 of the possible passwords 25% of the
time. Such a distribution is highly peaked, and the
information content of the textual password space
is correspondingly reduced.

However, the fact that users do not pick passwords
uniformly is in itself not su�cient to make password

guessing attacks successful. The second factor that
renders textual passwords vulnerable is that the at-
tacker has signi�cant knowledge of the distribution
of user passwords, and can use that knowledge to
her advantage. In the case of textual passwords,
this knowledge includes information about speci�c
peaks in the distribution (users often choose pass-
words based on their own name), and information
about gross properties (words in the English dictio-
nary are likely to be chosen). Without information
about the distribution, an attacker would be no bet-
ter o� than if users were in fact choosing uniformly.

Due to the dependence of the security of a scheme on
the passwords that users choose in practice, a new
password scheme can not be proven better than an
old scheme. Performing trials on subjects in order
to learn the distribution of user passwords for a new
scheme is impractical for such large sample spaces.
In the case of textual passwords, learning the knowl-
edge that attackers routinely use would correspond
to trying to learn the English dictionary (among
others) given no prior knowledge of the types of let-
ter combinations used in English, by having sub-
jects type in 8-character passwords. In the absence
of such objective proof, we present three plausibil-
ity arguments that suggest that the DAS scheme
is considerably harder to crack than the conven-
tional textual scheme. Two of these are estimates of
the information content of the DAS password space,
which we argue improves on the information content
available with textual passwords. The third argu-
ment discusses the e�ect that lack of knowledge of
the distribution of user choices has on an attacker.

3.3.1 The Size of the Password Space

First we consider the raw size of the password space,
or in other words, its information content assuming
users are equally likely to pick any element as their
password. The raw size is an upper bound on the
information content of the distribution that users
choose in practice. We need some way to delimit the
password space in order to obtain a �nite answer, or
in probabilistic terms, a way to ascribe probability
zero to an in�nite subset of passwords, leaving a
�nite subset that we will count. We assume that all
passwords of total length (as de�ned in Section 3.1)
greater than some �xed value have probability zero.
We compute the size �(Lmax; G) of the space of
passwords of total length less than or equal to Lmax
on a grid of size G�G. � is de�ned in terms of the

(a) User inputs desired secret (b) Internal representation (c) Raw bit string

(d) Interface to database (e) Re-entry of (incorrect) secret (f) Authorization failed

Figure 3: A password is created by drawing the secret on the display as shown in (a). Both the internal
representation of the input password showing the cells covered by the user's drawing and the derived key
are depicted in (b) and (c) respectively. To apply a symmetric cryptographic function to records in the
database (shown in (d)), the user selects the records and then re-inputs the DAS password. If the encryption
of a known cleartext with the input password matches the stored ciphertext created during initialization,
then the symmetric cryptographic routine, Ek(x), is applied to the selected records. Otherwise, the user is
prompted to re-enter the DAS secret.

number of passwords with total length equal to L,
P (L;G) by:

�(Lmax; G) =

LmaxX
L=1

P (L;G)

In turn, P (L;G) can be de�ned in terms of N(l; G),
the number of strokes of length equal to l by:

P (L;G) =

l=LX
l=1

P (L� l; G)N(l; G)

That is, a new stroke of length l may be added to
any shorter password of length L� l to make a pass-
word of total length L. By de�ning P (0; G) = 1, we
complete the de�nition of the recurrence, once we
have given an expression for N(l; G).

The following recurrence relation de�nes N(l; G).
Let n(x; y; l; G) be the number of strokes of length
l ending at the cell (x; y) in a grid of size G � G.
Then N can be de�ned in terms of n by

N(l; G) =
X

(x;y)2[1::G]�[1::G]

n(x; y; l; G)

Clearly, 8(x; y) 2 [1::G] � [1::G]; n(x; y; 1; G) = 1.
Moreover, it is convenient to de�ne 8(x; y) 62 [1::G]�
[1::G]; n(x; y; l; G) = 0. The function n can then be
evaluated using the following recurrence:

n(x; y; l; G) = n(x� 1; y; l� 1; G)

+ n(x+ 1; y; l� 1; G)

+ n(x; y � 1; l� 1; G)

+ n(x; y + 1; l� 1; G)

Putting the pieces together, we can calculate the
size of the password space. The results for di�erent
upper bounds on total password length on a 5 � 5
grid are given in Table 1.

The data in Table 1 shows that the raw size of the
graphical password space surpasses that of textual
passwords for reasonable password con�gurations.
While these numbers are encouraging, in practice
not all graphical passwords are equally likely to be
chosen by users, rendering a uniform distribution
overly optimistic. For example, although the num-
ber of passwords of length greater than or equal to
12 is already greater than the number of textual
passwords of 8 characters or less constructed from
the printable ASCII codes (958 � 253), this includes
all possible combinations of twelve isolated dots.

In order to obtain a more realistic estimate of the
information content, in the following section we sug-
gest a model in which we characterize passwords as
being \memorable" in terms of the programs which
generate them.

3.3.2 Modeling User Choice

We assume that the reason that users choose from
such a small subset of textual passwords is that
the passwords in that set are more memorable than
those outside it. That lack of imagination on the
part of the user is not the cause for the lack of vari-
ety is supported by the fact that system-generated
passwords have been so unsuccessful [2]. By mak-
ing the same assumption about DAS passwords, we
can \reduce" our task to that of modeling the set of
\memorable" graphical passwords. If we can show
that this set, or some subset of it, has cardinality
larger than the dictionary of textual passwords from
which users typically choose, we can plausibly claim
that as far as information content goes, DAS is more
secure than conventional textual password schemes.
Here, we identify two such subsets using di�erent
criteria of memorability, and show that the cardi-
nalities of these sets do indeed satisfy the above cri-
terion.

What constitutes a memorable password? In the
textual case, one obvious component is semantic
content. If the sequence of characters has a mean-
ing for the user, the password is more likely to be
memorable [18, 27, 6]. This semantic de�nition is
extremely hard, if not impossible, to characterize

in the abstract. It is only because the semantic
content of many character combinations has been
established by the common use of a written lan-
guage that we can talk about such content at all. In
the DAS scheme, there are obvious password com-
ponents that have meaning, but it is impossible a

priori to identify exactly which passwords will have
semantic content, and to how many users, precisely
because it is not a representation with meanings es-
tablished by common use.

Memorability based on simple shapes The
�rst set of \memorable" passwords that we de�ne is
a subset of those passwords that might reasonably
be expected to carry meaning. We look at all strokes
in the form of rectangles, and show that by combin-
ing two such strokes, we already reach the size of
the dictionaries used to crack textual schemes. To
be more precise, consider the set of rectangles within
a G � G grid. Since a rectangle can be de�ned by
two rows (the top and bottom edges of the rectan-
gle) and two columns (the left and right edges), it is
clear that the number R(G) of rectangles on a G�G
grid is

R(G) =

�
G

2

�2
=

1

4
G2(G� 1)2

Each of these rectangles can be generated in many
ways. For example, the starting point of a stroke
can be at any of the corners, and the stroke direction
can be clockwise or counter-clockwise. This yields 8
possibilities for each rectangle. In addition, one can
choose whether to close the rectangle by returning
to the starting cell or not, again doubling the possi-
bilities. On a 5� 5 grid, this amounts to 1600 pos-
sible strokes. Two such strokes in succession gives
2:56�106 passwords, already roughly the size of the
textual dictionary that contained the passwords of
25% of users in Klein's study [12]. Clearly we can
generate a much larger set of passwords by consid-
ering variations on the theme of rectangles, or by
considering other Gestalt forms [33].

Memorability based on short algorithms

The second set of passwords that we describe is
suggested by the discussion of text-based graphi-
cal passwords in Section 2, which pointed toward a
di�erent de�nition of memorability. There, a mem-
orable sequence of positions seemed characterized
by the fact that there existed a short algorithm to

Lmax 1 2 3 4 5 6 7 8 9 10

log2(# passwords) 5 10 14 19 24 29 33 38 43 48
Lmax 11 12 13 14 15 16 17 18 19 20

log2(# passwords) 53 58 63 67 72 77 82 87 91 96

Table 1: Number of passwords of total length less than or equal to Lmax on a 5� 5 grid.

describe the sequence. It is this de�nition of mem-
orable that we wish to apply here, since it can be
characterized in precise terms. We do not argue that
every memorable password has a short algorithm to
describe it, but that passwords describable by short
algorithms are memorable. We will show that the
cardinality of this subset of memorable passwords
is already larger than the dictionary of character
sequences from which users most often draw their
passwords, and that therefore, following the argu-
ment above, the DAS password scheme should be
harder to crack in practice than the conventional
textual scheme.

In order to characterize the \complexity" of the al-
gorithm required to generate a DAS password, we
de�ne a very simple language suited to the task of
describing DAS passwords. Then, we generate all
programs in this language whose complexity is at
most a chosen maximum. In order to avoid count-
ing di�erent programs that produce the same pass-
word twice, we then execute the generated programs
to output the passwords, which are then bucketed,
and distinct passwords counted. The result is the
number of DAS passwords generated by programs
of complexity at most the chosen maximum.

Before describing the results of this endeavor, we
give some details of the language in which we gen-
erated the programs. The grammar of the language
is as follows:2

program ! digit digit block

block ! statement block

statement ! instr j

repeat digit block end

instr ! up j down j right j

left j penup j pendown

digit ! 1 j 2 j 3 j 4 j 5

2Those readers old enough to remember the APPLE II
will recognize that our language bears a striking resemblance
to LOGO [31].

The �rst two digits represent a starting position.
The instructions up, down, left, and right move
the pen one square in the indicated direction. If the
pen is currently in the down position, then moving
in the speci�c direction will draw a line. Otherwise,
the direction statement will merely move the pen
location. The pen begins in the up position. The
repeat statement is our iterator. We allow digit
values up to the number of grid squares on each
axis (i.e., 5 on a 5� 5 grid) to indicate the number
of repetitions, although in principle a password con-
sisting of more than 5 repetitions of something on
a 5� 5 grid are possible (e.g., ten dots in the same
position).

To calculate the complexity for a given program, we
assign a complexity to each literal in our language.
We assign every statement and digit complexity one,
except for the end marker, which has complexity
zero. This means that repeat loops have a com-
plexity of two (one for the repeat statement, and
one for the integer indicating the number of repe-
titions) plus the complexity of the repeated block.
In addition, the last penup statement of a program
is assigned a complexity of zero (lifting one's pen
from the surface at the end of entering a password
is di�cult to forget). So, for example, there are no
programs of complexity only two, since the integers
describing the starting position of the program al-
ready consume a complexity of two without allowing
any pendown statements. The �rst complexity of
which there are any programs is three|the two dig-
its describing the initial starting position, followed
by a pendown|and the passwords generated by
programs of complexity three are simply those con-
sisting of a single tap on one of the grid squares.
Note that our complexity calculations for programs
are very conservative, in the sense that even pen
movements between strokes (i.e., while the pen is
raised) are counted in the complexity of a program.

The results of using the above described proce-
dure for counting the number of DAS passwords of
a given complexity on a 5 � 5 grid are shown in
Figure 4. As expected, this data shows that the

number of DAS passwords grows exponentially as
a function of the maximum complexity of the pro-
gram. What is more interesting, however, is that
by extrapolation3 we see that the number of DAS
passwords generated by programs of only complex-
ity 12 far surpasses the dictionary size of approx-
imately 3 � 106 used in Klein's password-cracking
studies [12]. As a point of comparison, even just
tracing the outermost cells of a 5�5 grid to make a
square already requires a program of complexity at
least �fteen in our simple language. And, obviously
this design and many other, more complex ones will
fall in the realm of memorable for most users. We
believe that this is compelling evidence that DAS
passwords, of which those generated by programs of
complexity at most twelve are but a very small sub-
set, will be signi�cantly harder to crack in practice
than textual passwords. Example DAS passwords
and the shortest programs that generate them are
given in Appendix B.

8

10

12

14

16

18

20

5 6 7 8 9 10

lo
g(

pa

ss
w

or
ds

)

complexity

Figure 4: Number of DAS passwords generated by
programs of small complexity on a 5� 5 grid.

3.3.3 Lack of Knowledge of the Distribution

Given the size of typical password spaces, knowledge
of the distribution of user passwords is essential to
an adversary. Without such knowledge the adver-
sary has no way of directing her search toward more
probable passwords, and is no better o� than if users
really did pick their passwords uniformly from the
set of possibilities [8].

3Calculating the exact number of \memorable" graphi-
cal passwords, as de�ned by our language, for complexities
greater than 10 requires signi�cantly more computational re-
sources (and time) than we have available to us. An at-
tacker wishing to build any such database will face similar
di�culties.

Where did the knowledge of the distribution come
from in the case of textual passwords? For the most
part, dictionaries have been compiled by using rea-
sonable assumptions about likely choices. The as-
sumptions stem from the use of a shared language,
and shared knowledge of the semantic content of
words. For example, in the work of Klein [12] the
sources for likely passwords included the St. James
Bible, the Unix dictionary, and many other sources
of English words that were available to the author
precisely because they are a part of our language.
If these assumptions had turned out to be incor-
rect, textual password schemes would be extremely
di�cult to break in practice.

The assumptions made about likely password
choices are strongly con�rmed by Klein's work, and
by successful attacks on textual passwords, but con-
�rmation of pre-existing dictionaries is not the same
as deriving a dictionary in the �rst place by learn-
ing from example without prior knowledge. In the
case of textual passwords, this would mean learn-
ing the English dictionary (or some equivalent cor-
pus of words) by collecting user passwords. This
would involve acquiring millions of veri�ed pass-
words, and, as such, represents a signi�cant chal-
lenge for a would-be adversary.

In the case of the DAS scheme, similar reasonable
assumptions about user choice do not exist. Fur-
thermore, the learning task is made even more dif-
�cult by two factors. First, our previous arguments
suggest that both the space of passwords and the
space of likely user choices are considerably larger
than for textual passwords. Second, the platform
that we are targeting, PDAs, renders the task of
data collection much harder than on, e.g., networked
computers.

4 Prior Work

There is a considerable amount of prior work on au-
thenticating users via graphical inputs to a device,
particularly handwritten signatures (see, e.g., [14,
13, 21]). None of these works strive for exact re-
peatability by the user, and therefore, a model of
the user's graphical input is stored on the device
and used to ascertain whether a new input is su�-
ciently similar to the previously-stored one to grant
access. This renders it essential to protect the de-
vice's (PDA's) storage from probes by an attacker.

In contrast, repeatability is achieved in our schemes,
thereby enabling designs in which the device, if cap-
tured, is of little help to the attacker (see Section 1).

The security of textual passwords has been exam-
ined by numerous researchers, notably [19, 12, 9,
29, 34]. Without exception, these studies reiterate
the fact that people choose passwords that are easy
to �nd by automated search. In order to improve
the security of passwords, it is common practice for
system administrators to invoke reactive password
checkers to identify weak passwords [26, 20], or to
use proactive checkers to �lter out certain classes of
weak passwords when the user inputs her password
for the �rst time [3, 28].

A technique to improve the security of even a poorly
chosen password is to salt the password by prepend-
ing it with a random number, R, before hash-
ing [19, 16]. The e�ect is that the search space of
the attacker is increased by a factor of 2jRj if the
attacker does not have access to the salts.

The techniques in this paper can be combined in
natural ways with the techniques discussed above
for strengthening textual passwords|i.e., proactive
and reactive password checking, and salting|to im-
prove the security of graphical passwords, as well.

More distantly related is work on one-time pass-
words (e.g., [11]). One-time password schemes are
relevant primarily for network settings, to defend
against the threat of a network eavesdropper cap-
turing password information in transit between the
user and a secure authentication server. To render
such eavesdropping harmless, a one-time password
scheme varies the user's password from each login
to the next in a way that only the user and the
server can predict, based on state shared between
the server and user. In the main setting we consider,
however, there is no network communication that is
vulnerable to eavesdropping, and consequently the
attacks with which we are concerned is the capture
and analysis of all stored state relevant to authenti-
cation (the PDA in our setting, or equivalently the
server's and client's states in the one-time password
setting). One-time password schemes of which we
are aware o�er no bene�t against this attacker over
traditional password schemes.

5 Conclusions and Future Work

We have presented graphical password schemes that
achieve better security than conventional textual
passwords. Our approaches exploit the input capa-
bilities of graphical devices that allow us to decou-
ple the position of inputs from the temporal order
in which they occur. We presented arguments for
the security of our schemes in which we analyzed
the information content of the resulting password
spaces. We also presented a novel approach for cap-
turing the \memorability" of graphical passwords
by examining the class of DAS passwords generated
by short programs in a simple grid-based language,
and showed that even this relatively small subset of
graphical passwords (for some �xed program com-
plexity) constitutes a much larger password space
than the dictionaries of textual passwords to which
a high percentage of passwords typically belong.

For future work we are exploring alternative
schemes for modeling the memorability of DAS pass-
words that we hope will capture their high-level
structure more intuitively than our current mod-
els. The goal is to capture the concept of organized
drawings, in which the view of the whole is more
than just the sum of the individual parts that con-
stitute it. For example, one can view a square as an
object in itself and not simply as an arrangement
of the individual lines from which it is composed.
In this way, we can de�ne a set of primitive struc-
tures from which all \memorable" drawings can be
derived using meta-level compositions of these prim-
itives. We hope to show that even this reduced set
of DAS passwords (for some reasonable number of
primitives) constitutes a larger space than that of
textual-based passwords, and as such will be signif-
icantly harder to crack in practice.

6 Acknowledgement

This work is partially sponsored by a USENIX Schol-

ars Research Grant; and by the Defense Advanced Re-

search Projects Agency (DARPA) and Rome Labora-

tory, Air Force Materiel Command, USAF, under agree-

ment numbers F30602-96-1-0320 and F30602-99-1-0517;

and by the National Science Foundation under grant

number CCR-9411590. The U.S. Government is au-

thorized to reproduce and distribute reprints for Gov-

ernment purposes notwithstanding any copyright anno-

tation thereon. The views and conclusions contained

herein are those of the authors and should not be inter-

preted as necessarily representing the o�cial policies or

endorsements, either expressed or implied, of DARPA,

Rome Laboratory, or the U.S. Government.

References

[1] A. Alvare. How crackers crack passwords or what pass-
words to avoid. In Proceedings of the 2nd USENIX Se-

curity Workshop, August 1990.

[2] M. Bishop. Password management. In Proceedings of

COMPCON '91, pages 167{169, February 1991.

[3] M. Bishop. Improving system security via proactive
password checking. Computers and Security, 14(3):233-
249, April 1995.

[4] G. Blonder. Graphical passwords. United States Patent
5559961, 1996.

[5] G. H. Bower, M. B. Karlin, and A. Dueck. Comprehen-
sion and memory for pictures. Memory and Cognition,
2:216{220, 1975.

[6] M. A. Borges, M. A. Stepnowsky, and L. H. Holt. Re-
call and recognition of words and pictures by adults and
children. Bulletin of the Psychonomic Society, 9:113{
114, 1977.

[7] M. W. Calkins. Short studies in memory and associa-
tion from the Wellesley College Laboratory. Psycholog-
ical Review, 5:451{462, 1898.

[8] T. M. Cover,and J. A. Thomas. Elements of Information
Theory, John Wiley and Sons, 1991.

[9] D. Feldmeier and P. Karn. UNIX password security|
Ten years later. In Advances in Cryptology|CRYPTO

'89 Proceedings (Lecture Notes in Computer Science
435), 1990.

[10] S. Gar�nkel and E. Spa�ord. Practical Unix & Internet

Security. O'Reilly & Associates, Inc., 1996.

[11] N. Haller. The s/key(tm) one-time password system. In
Proceedings of the 1994 Symposium on Network and

Distributed System Security, pages 151{157, February
1994.

[12] D. Klein. Foiling the cracker: A survey of, and improve-
ments to, password security. In Proceedings of the 2nd

USENIX Security Workshop, August 1990.

[13] F. Leclerc and R. Plamondon. Automatic signature veri-
�cation: The state of the art|1989{1993. International
Journal on Pattern Recognition and Arti�cial Intelli-

gence, 8(3):643{660, June 1994.

[14] G. Lorette and R. Plamondon. Dynamic approaches to
handwritten signature veri�cation. In Computer Pro-

cessing of Handwriting, pages 21{47, World Scienti�c,
1990.

[15] S. Madigan. Picture memory. In Imagery, Memory, and

Cognition, pages 65{86, Lawrence Erlbaum Associates,
1983.

[16] U. Manber. A simple scheme to make passwords based
on one-way functions much harder to crack. Computers
& Security, 15(2):171{176, 1996.

[17] G. Mandler. Your face looks familiar but I can't remem-
ber your name: A review of dual process theory. Relating
Theory and Data, 207{225, 1991.

[18] G. A. Miller. The magical number seven, plus or minus
two: Some limits on our capacity for processing infor-
mation. Psychological Review, 63:81{97, 1956.

[19] R. Morris and K. Thompson. Password security: A case
history. Communications of the ACM, 22(11):594{597,
November 1979.

[20] A. Mu�et. Crack: A sensible password checker for Unix.
Available via anonymous ftp from cert.org.

[21] V. S. Nalwa. Automatic on-line signature veri�cation.
Proceedings of the IEEE, pages 215{239, February 1997.

[22] D. L. Nelson, U. S. Reed, and J. R. Walling. Picture
superiority e�ect. Journal of Experimental Psychology:
Human Learning and Memory, 3:485{497, 1977.

[23] A. Paivio. Imagery and Verbal Processes. Holt, Rine-
hard, and Winston, New York, 1971.

[24] A. Paivio. Imagery in recall and recognition. Recall and
Recognition, John Wiley, New York, 1976.

[25] A. Paivio, T. B. Rogers, and P. C. Smythe. Why are pic-
tures easier to recall than words? Psychonomic Science,
11:137{138, 1968.

[26] T. Raleigh and R. Underwood. CRACK: A distributed
password advisor. In Proceedings of the 1st USENIX

Security Workshop, pages 12{13, August, 1988.

[27] R. N. Shepard. Recognition memory for words, sen-
tences, and pictures. Journal of Verbal Learnings and

Verbal Behavior, 6: 156{163, 1967.

[28] E. Spa�ord. Preventing weak password choices. In Pro-

ceedings of the 14th National Computer Security Con-

ference, pages 446{455, October 1991.

[29] E. Spa�ord. Observations on reusable password choices.
In Proceedings of the 3rd USENIX Security Symposium,
September 1992.

[30] L. Standing. Learning 10,000 pictures. Quarterly Jour-

nal of Experimental Psychology, 25:207{222, 1973.

[31] Cynthia J. Solomon and Seymour Papert. A case study
of a young child doing Turtle Graphics in LOGO. MIT

AI memo 375, July 1976.

[32] J. E. Wells. Encoding and memory for verbal and
pictorial stimuli. Journal of Experimental Psychology,
24:242{252, 1972.

[33] Max Wertheimer. Laws of organization in perceptual

forms. A source book of Gestalt psychology (pp. 71-88).
London: Routledge & Kegan Paul. 1938.

[34] T. Wu. A real-world analysis of Kerberos password secu-
rity. In Proceedings of the ISOC Symposium on Network

and Distributed System Security, 1999.

A A Picture is Worth a Thousand
Words

Our \draw-a-secret" scheme is motivated by the
experimentally-proven fact that pictures are easier

to remember than words. Why are pictures easier
to recall? Four hypotheses have been o�ered as ex-
planations of picture-word di�erences in recall:

� Common-code theory: this view of memory
and recall theorizes that pictures and words
access semantic information in a single concep-
tual system that is neither word-like or picture-
like. This theory hypothesizes that pictures
and words both require analogous processing
before accessing semantic information, but pic-
tures require less time than words for accessing
the common conceptual system. Common-code
theorists attribute better picture recall to dif-
ferences in the encoding of pictures and words:
pictures share fewer common perceptual fea-
tures among themselves and therefore need to
be discriminated from a smaller set of possible
alternatives than words. The greater number of
dictionary meanings or the greater lexical com-
plexity of words create uncertainty and confu-
sion, and hence poorer recall.

� Dual-code theory: unlike the common-code
approach, this theory postulates that lan-
guage and knowledge of worlds are represented
in functionally distinct verbal and nonverbal
memory systems. The verbal system is spe-
cialized for dealing with linguistic information
whereas the non-verbal stores perceptual infor-
mation. The most evident examples of dual
process theory can be found in experiences that
we have all had at some time or the other: we
meet someone, know them to be familiar but do
not know who they are; we recognize a melody,
but fail to remember its name or when or where
we heard it before; we read a line of a poem,
know it, but do not know where we have read
it before, much less the title or author of the
poem. In all these cases, we experience a sense
of familiarity, but have | at least at �rst |
no access to any contextual or conceptual in-
formation [17].

Dual code theory suggests that there are qual-
itative di�erences between the ways words and
pictures are processed during memory and hy-
pothesizes that the reason for superior picture
memory is that pictures automatically engage
multiple representations and associations with
other knowledge about the world, thus encour-
aging a more elaborate encoding than occurs
with words [25, 23].

� Abstract-propositional theory: in contrast to

the dual-code approach, this theory rejects any
notion of sophisticated distinctions between
verbal and nonverbal modes of representation,
but instead describes representations of experi-
ence or knowledge in terms of an abstract set of
relations and states, called propositions. This
theory postulates that better free recall with
pictures may be due to even more elaborative
encoding e�ects than those suggested by dual-
code theorists. Propositional theorists view the
involvement of abstractive and interpretive pro-
cesses in picture memory as the explanation for
the picture e�ect [15]. Therefore, a series of
line drawings will be poorly remembered if a
subject is unable to interpret the drawings in a
meaningful way, whereas memory for the same
drawings, presented in the same way will be
much better if a conceptual interpretation is
provided, and it this interpretive process which
is responsible for better picture memory recall.

While the strongest evidence thus far for the pic-
ture e�ect can be best explained by dual-code the-
ory (see [17]), an understanding of picture memory
and the means by which we acquire and maintain
information about the visual environment is still an
ongoing challenge. Nonetheless, the research to date
provides strong arguments in terms of the memora-
bility of drawings over words in recognition tasks
and hence its applicability to computer security.

B Example DAS Passwords

The examples illustrated in Figure 5 show a few
DAS passwords along with the shortest programs
which generate them (using the grammar outlined
in Section 3.3.2) and their respective complexities.

1 1
p e n d o w n
repeat 4
r ight
e n d
repeat 4
d o w n
e n d
repeat 4
left
e n d
repeat 4
u p
e n d
p e n u p

1 1
pendown
repeat 4
down
end
right
r ight
up
up
down
down
right
r ight
repeat 4
up
end
penup

(a) (b)

2 2 end
pendown right
repeat 2 r ight
r ight pendown
down left
left left
end penup
penup
right
r ight
down
pendown
left
left
penup
repeat 4
up

1 1 repeat 3
repeat 2 up
pendown end
down right
r ight end
up pendown
penup repeat 4
left down
repeat 3 end
down penup
end
pendown
down
right
up
penup

(c) (d)

1 1 repeat 2 repeat 4
pendown penup right
penup down end
repeat 4 left pendown
right pendown penup
end end
pendown penup
penup right
down right
repeat 3 pendown
left penup
end down
pendown repeat 3
penup left
r ight end
right pendown
pendown penup

1 1 end penup
pendown repeat 4 up
repeat 4 r ight repeat 4
r ight end left
end pendown end
down down repeat 3
left repeat 4 left
up left pendown
left end penup
left up end
down right
left down
up left
penup left
repeat 3 up
down right

(e) (f)

Figure 5: The drawings above have complexities 15, 17, 24, 26, 39, and 42, respectively (recall that �nal
pen-ups have zero cost).

