
ATTACKS AGAINST THE
WAP WTLS PROTOCOL

Markku-Juhani Saarinen
University of Jyväskylä
P.O. Box 35
FIN-40351 Jyväskylä, Finland
mjos@jyu.fi

Abstract
The WAP WTLS protocol was designed to provide privacy, data

integrity, and authentication for wireless terminals. The protocol is
currently being fielded, and it is expected that the protocol will be
contained in millions of devices in a few years.

Even though the WTLS protocol is closely modeled after the well-
studied TLS protocol, we have identified a number of potential security
problems in it. In this note, we describe a chosen plaintext data recovery
attack, a datagram truncation attack, a message forgery attack, and a
key-search shortcut for some exportable keys.

1. INTRODUCTION
The WTLS [18] (Wireless Transport Layer Security) protocol is the

security layer of the WAP (Wireless Application Protocol). It is be-
coming the de facto standard for providing privacy, data integrity, and
authentication for applications in cellular phones and other small wire-
less terminals. Millions of devices using WTLS are expected to be fielded
worldwide before the end of the year 2000.

WTLS bears a close resemblance to the SSL [8, 19] and TLS [7] pro-
tocols, but a number of changes has been made to the protocol by the
WAP Forum. These changes were motivated by the special requirements
of the WTLS protocol:

Both datagram and connection oriented transport layer protocols
must be supported.

The protocol must be able to cope with long round-trip times.

The bandwidth of some bearers can be very low.

The processing power of many mobile terminals is quite limited.

The memory capacity of many mobile terminals is very modest.

The restrictions on exporting and using cryptography must be con-
sidered.

In other words, the authors of WTLS took TLS and tried to add
datagram support, optimize the packet size, and select fast algorithms
into the algorithm suite.

2. SECURITY
At the surface, the WTLS looks reasonably good. Most of the text in

the WTLS specification has been adopted, word to word, from the TLS
specification. However, many of the changes that were made by WAP
Forum have led to security problems.

Predictable IVs lead to chosen-plaintext attacks against low-
entropy secrets. While the TLS protocol was designed to be used
over a reliable transport (such as TCP/IP), the WTLS protocol should
be able to operate over an unreliable datagram transport where data-
grams may be lost, duplicated, or reordered. If CBC mode is being used,
this requirement makes it necessary for the IV to be either contained in
the packet itself (explicit IV, as in IPSec) or that the IV for that block
is somehow derived from data already available to the recipient. WTLS
uses a linear IV computation, even for reliable transports.

When a block cipher is used in CBC mode, the IV for encrypting each
packet is computed as follows:

IV s = IV 0 ⊕ (s | s | s | s)

where s is a 16-bit sequence number of the packet and IV 0 is the original
IV, derived during key generation. The plaintext blocks Ps,0, Ps,1, . . . in
the packet s are encrypted as

Cs,0 = Ek(IV s ⊕ Ps,0)
Cs,i = Ek(Cs,i−1 ⊕ Ps,i), for i > 0

Consider a terminal application (such as telnet), where each keypress
is sent as an individual packet. Alice enters her password into this
application, and Eve captures these packets. Eve now has blocks of type

Cs,0 = Ek(Ps,0 ⊕ IV 0 ⊕ (s | s | s | s))

where Ps,0 contains an unknown letter of Alice’s password. Note that s
is known to Eve.

Now somehow Eve gets hold of Alice’s channel, perhaps through an
echo feature in some application. Eve guesses that the unknown letter
in the password is L. Eve sends the following packet through Alice’s
channel:

Pr,0 = L⊕ (s | s | s | s)⊕ (r | r | r| r)

where r is the sequence number of this packet. One can see that because
(r | r | r | r) cancels out in the CBC computation, a right guess L = Ps,0
leads to matching ciphertexts Cr,0 = Cs,0. In other words, this is an
oracle that tells whether the guessed password letter was correct. The
entire password can be brute forced, letter by letter, with a few hundred
tests using this oracle.

While the above description of the attack is highly simplified, one can
see that a too easily predictable IV leads to situations where low-entropy
secrets can be read.

This attack is similar to the attacks described by Bellovin against the
IPSec protocol in [3].

The XOR MAC and stream ciphers. The WTLS protocols sup-
ports, among other MACs, a 40-bit XOR MAC. The XOR MAC works
by padding the message with zeros, dividing it into 5-byte blocks and
xoring these blocks together. Note that this construction differs from
the one presented in [2].

The specification states that the XOR MAC is only intended for “some
devices with very limited CPU resources”. The specification also tells us
that that the XOR MAC “may not provide as strong message integrity
protection as SHA” when export able encryption is being used. In fact it
is easy to see that the XOR MAC does not provide any message integrity
protection if stream ciphers are being used, regardless of the key length.

If one inverts a bit position n in the ciphertext, the MAC can be
made to match by inverting the bit (n mod 40) in the MAC. This can
be repeated arbitrary number of times. Thus, when stream ciphers are
used, the XOR MAC does not provide any integrity protection.

35-bit DES encryption. The 40-bit DES encryption method is de-
fined to use five bytes of keying material. Because of the parity bits
contained in each byte of a DES key, there are only 5 ∗ 7 = 35 effective
key bits in five bytes. This amounts to a reduction of the keyspace by
a factor of 32. We note that the 56-bit DES has the correct amount of
keying material (8 bytes).

The protocol clearly does not meet its requirement of reaching the
best possible security level in export-weakened encryption modes.

The PKCS #1 attack. The RSA signatures and encryption are per-
formed according to PKCS # 1, version 1.5 [9]. Daniel Bleichenbacher
and others have demonstrated that if the protocol includes an oracle
that tells whether a given packet has a correct PKCS # 1 v 1.5 padding,
RSA messages can be decrypted with approximately 220 chosen cipher-
text queries [6, 5]. In some implementations the WTLS error messages
bad_certificate and decode_error may provide such an oracle to the
attacker.

We recommend that the 2.0 version of the PCKS #1 should be used
instead [10, 17].

Unauthenticated alert messages. Some of the alert messages used
in the protocol are sent in cleartext and are not properly authenticated.
Most of these messages are warnings and do not cause the the session
to be terminated.

Since an alert message can take up a sequence number ”slot” in the
protocol, an active attacker may replace an encrypted datagram with an
unauthenticated plaintext alert message with the same sequence number
without being detected. This leads to a truncation attack that allows
arbitrary packets to be removed from the data stream.

We recommend that all messages affecting the protocol state should
be properly authenticated.

Other Plaintext leaks. Under exportable keys the initial IV of each
packet can be determined by an eavesdropper from the Hello messages
and the sequence number alone. We are not aware of export laws in any
country that would mandate this.

The change of keys can be determined by an eavesdropper, because
the record_type field is sent unencrypted. This field determines the
type of the message; one type being the Change Cipher Spec type.

Also, the existence of encrypted error messages can be determined
from the record_type field. The exact nature of the encrypted error
messages can not be determined.

Probable plaintext attacks. In order to mount an exhaustive key
search on a symmetric cipher, one needs to have enough known or prob-
able plaintext, so that the correct key can be recognized with trial de-
cryption of one or more blocks. Attacks of this type against the IPSec
protocol have been considered in [4].

We have observed that brute force attacks against the block ciphers
in WTLS can be easily mounted, because the correct keys can be always
recognized with a trial decryption of the last block of each packet.

We assume that a 64-bit block cipher is used. The last block is padded
to the next full 8-byte limit by filling it with the padding length. In other
words, if the last byte of E−1

k (Ci)⊕ Ci−1 is n, the preceding n bytes of
the plaintext must also contain this number.

If this test is passed, the key can be furthermore verified with the last
block of arbitrary number of packets.

A note on Diffie-Hellman key agreement. The WTLS specifica-
tion includes 512- and 768-bit primes p1 and p2, along with generators,
that are to be used in Diffie-Hellman computations. The group order of
the multiplicative subgroup generated by the generator is not given.

The absence of the group order makes it impossible to check that the
given public value belongs to the correct multiplicative subgroup, as in
DSA and KEA [11, 13].

It is known that if the group order is relatively smooth, the dis-
crete logarithm problem becomes substantially easier to an attacker that
knows the the factorization of the group order [14].

To verify that the group order was not divisible with small factors of
p−1 (for either of these groups), we ran Paul Zimmerman’s GMP-ECM
elliptic curve factoring program for a total of 100 hours of CPU time on
333 MHz Sun Ultra 10s.

We found 4 factors (largest 52 bits) of the 512-bit number p1 − 1 ,
leaving a 438-bit composite cofactor. We verified that the group order
of group 1 is not divisible with the factors found.

We found 7 factors (largest 70 bits) of the 768-bit number p2 − 1,
leaving a 658-bit composite cofactor. We verified that the group order
of group 2 is not divisible with the factors found.

We suspect that the group order information was left out from the
specification, not because of an attempt to mount a back door into
WTLS, but because the authors did not see the relevance of the group
order to the security of Diffie-Hellman key exchange. The group orders
of the elliptic curve groups are given. These are all prime.

3. CONCLUSIONS
We have identified a number of security flaws and shortcomings in

the WAP WTLS protocol: a chosen plaintext data recovery attack, a
datagram truncation attack, a message forgery attack, and a key-search
shortcut for some exportable keys. WTLS clearly needs revision.

It is interesting to note that despite their close resemblance, the WTLS
protocol appears to be more vulnerable to attacks than TLS. Most of the
attacks presented in this paper against WTLS have previously appeared
in research literature in some form. We stress the need for prudent secu-
rity engineering, even when making minor changes to a communications
security protocol.

4. ACKNOWLEDGEMENTS
This work is based on publicly available documents. The security

problems described in this work differ from those that were found by the
author in a preliminary evaluation of a confidential draft of the WAP
WTLS protocol.

The author wishes to thank colleagues at SSH Communications Se-
curity and University of Jyväskylä for their encouragement, and the
anonymous referees for their valuable comments.

References

[1] M. Bellare, R. Canetti and H. Krawczyk, “Keying Hash Functions
for Message Authentication,” Advances in Cryptology – Crypto ’96
Proceedings, Springer-Verlag, 1996

[2] M. Bellare, R. Guérin and P. Rogaway, “XOR MACs: New Methods
for Authentication Using Finite Pseudorandom Functions,” Advances
in Cryptology – Crypto ’95 Proceedings, Springer-Verlag, 1995

[3] S. Bellovin, “Problem Areas for the IP Security Protocols,” Proceed-
ings of the Sixth USENIX Security Symposium, pp. 205–214, USENIX
Association 1996

[4] S. M. Bellovin, “Probable Plaintext Cryptanalysis of the IP Security
Protocols,” Proceedings of the Symposium on Network and Distributed
System Security, pp. 155 – 160, 1997

[5] D. Bleichenbacher, “Chosen Ciphertext Attacks against Protocols
Based on the RSA Encryption Standard PKCS #1,” Advances in
Cryptology – Crypto ’98 Proceedings, pp. 1 – 12, Springer-Verlag, 1998

[6] D. Bleichenbacher, B. Kaliski and J. Staddon, “Recent results on
PKCS #1: RSA Encryption Standard,” RSA Laboratories’ Bulletin,
Number 7, June 26, 1998.

[7] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246,
ftp://ftp.isi.edu/in-notes/rfc2246.txt, 1999

[8] A. O. Freier, P. Karlton and P. C. Kocher, “The SSL Protocol Version
3.0,” http://www.netscape.com/eng/ssl3/draft302.txt, 1996

[9] B. Kaliski, “PKCS #1: RSA Encryption Version 1.5,” RFC 2313,
ftp://ftp.isi.edu/in-notes/rfc2313.txt, 1998

[10] B. Kaliski and J. Staddon, “PKCS #1: RSA Cryp-
tography Specifications Version 2.0,” RFC 2437,
ftp://ftp.isi.edu/in-notes/rfc2437.txt, 1999

[11] National Institute of Standards and Technology, “Digital Signature
Standard,” FIPS PUB 186, 1994

[12] National Institute of Standards and Technology, “Secure Hash Stan-
dard,” FIPS PUB 180-1, 1995

[13] National Security Agency, “Skipjack and
KEA Algorithm Specifications Version 2.0,”
http://csrc.nist.gov/encryption/skipjack-kea.htm, 1998

[14] S. Pohlig and M. Hellman, “An improved algorithm for comput-
ing logarithms over GF (p) and its cryptographic significance,” IEEE
Transactions on Information Theory, Vol. 24, pp. 106 – 110, 1978

[15] J. Pollard, “Monte Carlo Methods for Index Computation (mod
p),” Mathematics of Computation, Vol 32., pp. 918 – 924, 1974

[16] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC1321,
ftp://ftp.isi.edu/in-notes/rfc1321.txt, 1992

[17] M. Robshaw and J. Staddon, “A Note on the Security of the OAEP-
Enhanced RSA Public-Key Encryption Scheme,” RSA Laboratories’
Bulletin, Number 9, February 23, 1999

[18] WAP Forum, “Wireless Application protocol – Wireless Transport
Layer Security Specification, Version 12-Feb-1999,” available from
http://www.wapforum.org, 1999

[19] D. Wagner and B. Schneier, “Analysis of the SSL 3.0 protocol,” Pro-
ceedings of the Second USENIX Workshop on Electronic Commerce,
USENIX Press, pp. 29–40, 1996

