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Abstract. A popular technique to construct stream ciphers is to use a linear sequence
generator with a very large period and good statistical properties and a non-linear filter.
There is abundant literature on how to use linear approximations of this non-linear function
to attack the cipher, which is known as (fast) correlation attacks. In this paper we explore
non-linear approximations, much less well known. We will reduce the cryptanalysis of a
stream cipher to solving an overdefined system of multivariate equations.
At Eurocrypt 2000, Courtois, Klimov, Patarin and Shamir have introduced the XL algo-
rithm for solving systems of overdefined multivariate quadratic equations over finite fields.
The exact complexity of the XL algorithm remains an open problem. and some authors
such as T.T.Moh have expressed serious doubts whether it actually works very well. How-
ever there is no doubt that such methods work very well for largely overdefined systems
(much more equations than variables), and we confirm this by computer simulations. Luck-
ily systems we obtain in cryptanalysis of stream ciphers are precisely very overdefined.
In this paper we will show how to break efficiently stream ciphers that are known to be im-
mune to all the previously known attacks. For example, we will be able to break the stream
cipher Toyocrypt submitted to the Japanese government Cryptrec call for cryptographic
primitives, and one of only two candidates accepted to the second phase of Cryptrec eval-
uation process. Toyocrypt is a 128-bit stream cipher and at the time of submission it was
claimed to resist to all known attacks on stream ciphers. Later, Mihaljevic and Imai have
published a ”guess-and-find” attack that shows that the effective key length in Toyocrypt is
96 bits. Still Toyocrypt may be easily modified to avoid this attack. In this paper we show
a new, surprisingly efficient attack, that breaks both Toyocrypt and the modified versions.
Our best attack on Toyocrypt takes 292 CPU clocks for a 128-bit cipher. Moreover this
type of attack has surprisingly small and loose requirements on the keystream needed, it
works even knowing ONLY that the ciphertext is in English.
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1 Introduction

The security of most cryptographic schemes is usually based on impossibility to extract
some secret information, given access to some encryption, signature oracles or other
derived information. In most useful cases, there is no security in information-theoretic
setting: the adversary has usually enough information to uniquely determine the secret
(or the ability) he wants to acquire. Moreover the basic problem problem is always (in



2

a sense) overdefined: the adversary is assumed to dispose of, for example, great many
plaintext and cipher text pairs, message and signature pairs, etc. He usually disposes of
much more than the information needed to just determine the secret key.
Thus, one might say, most cryptographic security relies on the hardness of largely overde-
fined problems. In public key cryptography, the problem is addressed by provable security,
that will assure that each utilization of the cryptographic scheme does not leak useful
information. The security is guaranteed by a hardness of a single difficult problem, and
does not depend on how many times the scheme have been used.
However unfortunately, there is yet very little provable security in secret key cryptogra-
phy. It is also in secret key cryptography that the problems become most overdefined,
due to the amounts of data that are usually encrypted with one single session key. This
especially true for stream ciphers: designed to be extremely fast in hardware, they can
encrypt astronomic quantities of data, for example on an optical fiber link.
In this paper we will show that a large class of stream ciphers gives an overdefined system
of multivariate equations of low degree. The fact that solving such overdefined systems
of equations, is much easier than expected, has been demonstrated at Eurocrypt 2000
by Courtois, Klimov, Patarin and Shamir, as a development of an earlier linearization
technique proposed by Shamir and Kipnis at Crypto 1999 [24].
The possibility to use multivariate polynomial equations in cryptanalysis was recently
brought to public attention by Courtois and Pieprzyk [6]. This kind of attacks seems to
give a complexity that grows very slowly with the parameters of the cipher, but with
a huge constant. Such attacks became interesting only recently, because only recently
some cryptosystems that claim to achieve the security as high as 2256 have been proposed.
Unfortunately, these attacks are, to say the least, heuristic, it is very difficult to evaluate
their complexity, and sometimes it is even impossible to verify if they actually work,
because even for small examples they give huge complexities.
In this paper we will apply similar techniques to stream ciphers. Unlike in the work of
Courtois and Pieprzyk, our systems of equations will be much more overdefined. We will
show that in this case it is possible to predict the behaviour of the XL method with
precision and confidence. This will be confirmed by compter simulations.
We will attack a large class of stream ciphers in which there is a linear part, producing
a sequence with a large period, and a nonlinear part that produces the output, given
the state of the linear part. This includes the very popular filter generator, in which the
state of a single LFSR is transformed by a boolean function, and also not less popular
combinatorial function generators, in which outputs of several LFSR are combined by a
boolean function.
The security of such stream ciphers have been studied by many authors. In [12], Golic
gives a set of criteria that should be satisfied in order to resist to the known attacks on
stream ciphers. For example, a stream cipher should resist to the fast correlation attack
[15], the conditional correlation attack [1] and the inversion attack [12]. Moreover, several
authors have developed improved fast correlation attacks.
In this paper we show that correlation immunity of order one is not sufficient, and show
that it is really possible to use (at least in theory) any correlation of any order in an
attack. We demonstrate that such attacks can be much faster than exhaustive search for
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real stream ciphers, for example for Toyocrypt, that has been accepted to the second
phase of the Japanese Cryptrec call for primitives. The paper is organized as follows:
In Section 2 and in the Appendix we study the XL algorithm from [25] for solving
multivariate quadratic equations, and extend it to equations of higher degree. In Section
3 we study a possibility to apply our results on XL to the problem of cryptanalysis of
stream ciphers, the actual attack is given is Section 3.4. In Section 4 we discuss the
opportunity to use bent functions in stream ciphers. Then in Section 5 we apply our
attack on Toyocrypt stream cipher. In Section 7 we discuss various modifications of
Toyocrypt and various extensions of the attack. Finally we present our conclusions.

2 The XL Algorithm

In the Appendix A.2 of this paper we describe a rather obvious extension of the XL
algorithm proposed by Courtois; Klimov, Patarin and Shamir at Eurocrypt 2000 [25].
Instead of solving a system of m multivariate quadratic equations with n variables of
degree K = 2 as in [25], we will consider higher degree equations, i.e. the general case
K ≥ 2: Let D be the parameter of the XL algorithm. Let li be the initial equations.
The XL algorithm consists of multiplying both sides of these equations by products of
variables:

Definition 2.0.1 (The XL algorithm). Execute the following steps:

1. Multiply: Generate all the products
∏k

j=1 xij · li with k ≤ D −K, so that the total
degree of these equations is ≤ D.

2. Linearize: Consider each monomial in the xi of degree ≤ D as a new variable and
perform Gaussian elimination on the equations obtained in 1.
The ordering on the monomials must be such that all the terms containing one
variable (say x1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the powers of
x1. Solve this equation over the finite field (e.g., with Berlekamp’s algorithm).

4. Repeat: Simplify the equations and repeat the process

An extended analysis of the complexity of the XL algorithm and in the general case K ≥ 2
is done in the Appendix. The main problem in the XL algorithm is that in practice not
all the equations generated are independent. Let Free be the exact number of equations
that are linearly independent in XL. Very little is known about the exact value of Free
for D ≥ 3. In the paper that describes XL, the authors demonstrate that XL works with
a series of computer simulations for K = 2 and over GF (127) In Appendix B we will
show that XL also works very well also for K > 2 and over GF (2). Moreover we will be
able to explain the origin of the linear dependencies that appear in the XL algorithm,
and thus to predict the exact value Free in XL. We will give a formula that allows to
compute Free (Conjecture B.3.1). This formula, though not rigourously proven to be
exact, is always true in all simulations we have done, and in particular for values K and
D that appear in the systems of equations, used in our later cryptographic attacks on
stream ciphers. This will allow us to say that our applications of XL should exactly as
predicted.
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3 Application of XL to Stream Ciphers

In this part we will outline a general strategy to apply the XL attack to a general class
of stream ciphers. Then we will apply it to some real stream ciphers.

3.1 The Stream Ciphers that May be Attacked

We consider only synchronous stream ciphers, in which each state is generated from the
previous state independently of the plaintext, see for example [17] for precise definitions.
We consider regularly clocked stream ciphers, and also (indifferently) stream ciphers that
are clocked in a known way.
For simplicity we restrict to binary stream ciphers in which the state and keystream
are composed sequence of bits and that generate one bit at a time. We also restrict to
the case when the ”connection function” that computes the next state is linear over
GF (2). We call L this ”connection function”, and assume that L is public, and only the
state is secret. We also assume that the function f that computes the output bit from
the state is public and does not depend on the secret key of the cipher. The function
f used to combine the bits of the linear stage should obviously be non-linear, and this
way of building stream ciphers is sometimes called ”nonlinear filtering”. The problem
of cryptanalysis of a stream cipher can be described as follows. Let (k0, . . . kn−1) be the
initial state, then the output of the cipher (i.e. the keystream) is given by:

f (k0, . . . kn−1)
f (L (k0, . . . kn−1))
f
(
L2(k0, . . . kn−1)

)
...

The ciphers described above include the very popular filter generator, in which the state
of a single LFSR1 is transformed by a boolean function, and also not less popular scenario
in which outputs of several LFSR are combined by a boolean function (combinatorial
function generators).

3.2 The Attack Scenario

We are going to design a partially known plaintext attack, i.e. we know some bits of the
plaintext, and the corresponding ciphertext bits. the bits does not need to be consecutive.
For example if the plaintext is written with latin alphabet and does not use too much
special characters, it is very likely that all the characters have their most significant bit
equal to 0. This will be enough for us, if the text was sufficiently long.
In our later attacks we will just assume that we have some m bits of the keystream .

3.3 Criteria on the Function f

Let f be the boolean function2 that is used to combine the outputs of the linear part
of the cipher (the entries of the function are for example some bits of the state of some
1 A Linear Feedback Shift Register, see for example [17]. It is also possible to use a Modular LFSR, i.e.

a MLFSR, which is equivalent in theory, see, [18], but faster in practice and more secure in practice.
A MLFSR is used in the Toyocrypt cipher that we study later.

2 We restrict to the case when f is a single boolean function, however it is easy to see that the attack
works in exactly the same way if there are several boolean functions in parallel.
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LFSR’s). There many design criteria known on boolean functions. Some of them are
obvious to justify, for example a function should be balanced in order to avoid statistical
attacks, some are not, no practical attacks are known when the function does not satisfy
the criterion, and they are used rather to prevent some future attacks.
It is obvious that for stream ciphers such as described above, the function f should be
non-linear. The abundant literature on fast correlation attacks implies also that it should
be highly non-linear3. Similarly, f should have high order (i.e. high degree in its algebraic
normal form), to prevent algebraic attacks. More generally, a ”good” boolean function
should not only be of high degree, but correlation immune at high order, as pointed
ou in [4, 13]. This generalizes the high nonlinearity, which coincides with the correlation
immunity at order 1. However up till now, no practical and non-trivial attacks were
published, when a function is of high degree, but not higher-order correlation immune,
is used in a stream cipher. In this paper we will design such a general attack based on
the XL algorithm, and show that it can be successfully applied to Toyocrypt with a
complexity much smaller than the exhaustive search.
Our attack will work in two cases:

1. When the boolean function f that combines the LFSR’s bits has a low algebraic
degree K,

2. and more importantly when f can be approximated4 with good probability, by a
function g that has a low algebraic degree K.

Thus we will assume that:

f(s0, .., sn−1) = g(s0, .., sn−1) with probability ≥ 1− ε and with g of degree K

Note: In the first case, when f has just a low algebraic degree, it is known that the
system can be easily broken given

(n
K

)
keystream bits. A successful example of this attack

is described for example in [2]. In this paper we show that, using XL, successful attacks
can be mounted given much less keystream bits, and with much smaller complexities.
More importantly we don’t need that the function has a low algebraic degree (the second
case above). For example in Toyocrypt the degree of f is 63, but in our attacks it will
be approximated by a function of degree 2 or 4.

3.4 The Actual Attack

We will use the fact that at the time t after the start of the keystream generator, the
state is a known linear combination of the key bits. If we know some m bits of the key
stream, we have m equations as follows:

bt1 = f
(
Lt1(k0, . . . kn−1)

)
bt2 = f

(
Lt2(k0, . . . kn−1)

)
...

btm = f
(
Ltm(k0, . . . kn−1)

)
3 But maybe not perfectly non-linear, see Section 4.
4 If such a (sufficiently good) approximation exists, there are efficient algorithms to find it. This problem

is also known in artificial intelligence as ”learning polynomials in the presence of noise”, and in the
coding theory as ”decoding Reed-Muller codes”. See for example [4, 13, 10].
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We recall that f , and all the Lti are public, and only the kj are secret.
We assume that f agrees with a low degree polynomial g of degree K, on some notice-
able fraction of inputs (1 − ε). Then each of the keystream bits will gives one known
multivariate equation of degree K, with n variables (k0, .., kn−1), and being true with
probability (1− ε):

btm = g
(
Ltm(k0, . . . kn−1)

)
with probability ≥ 1− ε

If we have m such that (1 − ε)m ≥ 1
2 , we may assume that all these equations are true

and we have to find a solution to our system of m multivariate equations of degree K
with n variables. More generally, even if (1− ε)m < 1

2 , the attack still work if we repeat
it about (1 − ε)−m times, each time for a different subset of m keystream bits, and
until it succeeds. The complexity of this attack will be the complexity of generalized XL
obtained in Section A.4, multiplied by the number of tries necessary to succeed:

WF = Tω(1− ε)−m ≈
(

n

n
/
(mµ)1/K

)ω

(1− ε)−m

With µ being the ratio of linearly independent equations in XL. In all practical appli-
cations of this attack we will obtain µ = 1. This is due to the fact that in our practical
applications the systems are largely overdefined, and thus D is not too big. In this case,
it turns out that most of the equations are linearly independent, and more precisely it
is so until R exceeds T , after that we will have Free = T − ε with a small ε. For more
details, see Conjecture B.3.1 and the simulations in the Appendix B that always confirm
this conjecture.
The above attack requires about m keystream bits, out of which we chose m at each
iteration of the attack.We also need to chose m that minimizes the complexity give
above. In practice, since the XL algorithm complexity varies by thresholds depending
on value of D, we will in fact chose D and determine a minimal m for which the attack
works.

4 Non-linear Filtering using Bent Functions

As we have explained before, due to numerous known fast correlation attacks, cipher such
as we described above (for example filter generators) should use a function f that is highly
non-linear. From this, Meier and Staffelbach suggested at Eurocrypt’89 to use so called
perfect non-linear functions, also known as ”bent functions” [16, 22]. These functions
achieve optimal resistance to the correlation attacks, because they have a minimum
(possible) correlation to all affine functions, see Theorem 3.5. in [16].
It is therefore tempting to use a bent function as a combiner in a stream cipher. And
indeed many cryptographic designs (not only stream ciphers) use such functions, or mod-
ified versions of such functions 5. It is for example used in the stream cipher Toyocrypt
we study later.
Unfortunately optimality against one attack does not guarantee the security against other
attacks. Following Anderson [1], any criteria on f itself cannot be sufficient. The author

5 In general the authors of [16] did not advocate to use pure bent functions, because is is known that
these functions are not balanced and cannot have a very high degree. They advise to use modified
bent functions, for which it is still possible to guarantee a high non-linearity, see [16].
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of [1] claims that ”attacking a filter generator using a bent or almost bent function would
be easy” and shows why on small examples. He considers ”an augmented function” that
consists of α copies of the function f applied to consecutive windows of n consecutive
bits, among the n + α consecutive bits of an LFSR output stream. He shows explicit
examples in which even if f : GF (2)n → GF (2) is a bent function, still the augmented
function GF (2)n+α → GF (2)α will have very poor statistic properties, and thus will be
cryptographically weak.
For real ciphers, it is difficult to see if Anderson’s remark is really dangerous. For example
in Toyocrypt, an MLFSR is used instead of an LFSR, which greatly decreases the number
of common bits between two consecutive states, and more importantly, only a carefully
selected subset of state bits is used in each application of f . Thus it seems that Toyocrypt
will make any version of the attacks described by Anderson in [1] completely impractical.
However, in a way, this paper can be seen as one of many possible extensions of the
Anderson’s approach, form LFSR’s to arbitrary linear generators, i.e. with f and f ◦ L
that do not have common input bits anymore. We will show that efficient attacks still
exist.

Bent Function Used in Toyocrypt

The combining function f of Toyocrypt is built according to the following well known
theorem from [22]:

Theorem 4.0.1 (Rothaus 1976). Let g be any boolean function g : GF (2)k → GF (2).
All the functions f : GF (2)2k → GF (2) of the following form are bent:

f (x1, x2, x3, . . . , x2k) = x1x2 + x3x4 + . . . + x2k−1x2k + g (x1, x3, x5, . . . , x2k−1)

Remark: More precisely, as we will se below, the function of Toyocrypt is a Xor of s127

and a function build according to the above theorem. We must however say that using
such a function as a non-linear filter is not a very good idea. It is easy to see that if we
use a single LFSR or MLFSR, there will be always a ”guess and find” attack on such a
cipher. This is due to the fact that if we guess and fix k state bits, here it will be the
odd-numbered bits, then the expression of the output becomes linear in the other state
bits. This can be used to recover the whole state of the cipher given 3k/2 bits of it, i.e.
the effective key length in such a scheme is only 3k/2 instead of 2k bits. This attack is
explained in details (on the example of Toyocrypt) in [18]. In this paper we will not use
this property of f , and design a different attack. This new attack can also break many
variants of Toyocrypt with a function this is not all under the above form, and such that
the ”guess and find” attack of [18] will not apply.

5 Application of XL to the Cryptanalysis of Toyocrypt

In this section we will mount a general attack on Toyocrypt, that was, at the time of
the design, believed to resist to all known attacks on block ciphers. We will follow the
general attack framework described in Section 3.4, but will describe it in more details,
to make sure to obtain an exact evaluation of the complexity of this attack, and not an
approximation.
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In Toyocrypt, we have one 128-bit LFSR, and thus n = 128. The boolean function is of
the form:

f(s0, .., s127) = s127 +
62∑
i=0

sisαi + s10s23s32s42+

+(...a degree 17 monomial...) + (...a degree 63 monomial...)

with {α0, . . . , α62} being some permutation of the set {63, . . . , 125}. This system is quite
vulnerable to the XL higher order correlation attack we described above: the higher-order
monomials are almost always zero.

A Quadratic Approximation

Most of the time, the system is quadratic. We put: g(s0, .., s127) =
62∑
i=0

sisαi .

Then f(s) = g(s) holds with probability about 1−2−4. With the notations of the Section
3.4 we have K = 2 and ε = 2−4. This approximation does not allow efficient attacks.

An Approximation of Degree K = 4

One can also see that if we put:

g′(s) = g(s) + s10s23s32s42.

Then f(s) = g′(s) holds with probability very close to 1− 2−17. We have K = 4 and we
have approximatively ε = 2−17 (the error is very small, order of 2−63).

5.1 Our Higher Order Correlation Attack on Toyocrypt

As in Section 3.4, since the LFSR is entirely linear, from the 128-bit key k, we can express
the state s0, .., s127 at time t as a set of 128 known linear polynomials in k = (k0, .., k127)
which are si = Lti(k).
We have K = 4 and ε = 2−17. The equation (1− ε)m ≈ 1

2 gives m ≈ 216. This is simply
to say that if we consider some 216, not necessarily consecutive bits of the key stream,
the probability that for all of them we have f(s) = g′(s) will be about 1/2. A more
precise evaluation shows that if we put m = 1.3 · 216, we still have (1− ε)m = 0.52. This
is the value we are going to use.
Thus, given some m key stream bits, one can write from Toyocrypt m = 1.3·216 equations
of degree 4 and with 128 variables ki. All these equations are simultaneously satisfied
with probability of about 0.52. To this system of equations we apply generalized XL as
described in Appendix A.2. We have n = 128 and let D ∈ IN. We will multiply each of m
equations by all products of up to D−4 variables ki. The number of generated equations
is:

R = m

(
D−4∑
i=0

(
n

i

))
We also have

T =

(
D∑

i=0

(
n

i

))



9

We observe that for D = 9 we get R/T = 1.1401. Following our simulations and their
analysis, and since D < 3K, we expect that the exact number of linearly independent
equations is Free = Min(T,R−

(m
2

)
−m)− ε with a very small ε. See Section B.3. This

will be sufficient: we have (R−
(m

2

)
−m))/T = 1.13998, and thus R−

(m
2

)
−m > T and

R −
(m

2

)
− m is not very close to T . From this, following Conjecture B.3.1, we expect

that Free = T − ε with ε = 1. Thus XL will be able to solve the system of equations6 .
The complexity of the attack is the complexity of solving a linear system T × T (we
don’t need to take more than T equations). Though the best known algorithm for this
problem is asymptotically in T 2.376, see [5], the best practical algorithm we know is
Strassen’s algorithm, see [29]. The complexity of the Strassen’s algorithm is about 7 ·
T log27. In practice it gives about 7·T log27/64 CPU clocks, because the basic operations are
multiplications and addition of bits modulo 2. All these operations can be implemented in
a ”bitslice” manner, thus transforming a 64 bit machine in a Single Instruction Multiple
Data (SIMD) machine with 64 1-bit processors, see [3]. Thus the complexity of our attack
is:

WF =
7
64
· T log27 = 2122.

Thus we are able to break Toyocrypt faster than the exhaustive search of the key, using
only about m bits of the keystream, i.e. about 9 kilobytes.

6 Improved Versions of the XL Higher Correlation Attack

The attack described above can be improved by exploring the tradeoff described in
Section 3.4.

Exploring the Tradeoff

The basic idea is that, if we diminish a little bit a success probability of the attack, we
may use a higher m, the system will be more overdefined and we will be able to use a
lower value of D. This in turn greatly diminishes the value of T that can compensate for
the necessity to repeat the attack several times.
In the attack above we saw that Free = Min(T,R −

(m
2

)
−m)− ε and that we may in

fact neglect
(m

2

)
−m. Moreover if D becomes smaller, and when D < 2K = 8, following

Section B.3 we expect to have Free = Min(T,R)− ε with ε = 1, Thus we may say that
for D < 9, and R > 1.1 ·T the attack will certainly work. It gives the following condition
on m:

m

(
D−4∑
i=0

(
n

i

))
> 1.1 ·

(
D∑

i=0

(
n

i

))

Thus we put: m = 1.1
(∑D

i=0 (n
i)
)(∑D−4

i=0 (n
i)
) and the complexity of the whole attack is:

WF = (1− 1
217

)−m · 7 · T log27/64 = (1− 1
217

)−m · 7
64
·
(

D∑
i=0

(
n

i

))log27

6 The XL as described in [25] will work as long as ε < D + 1, undoubtedly easily achieved by taking
(R−

(
m
2

)
−m))/T slightly higher than 1. Moreover in [6], authors show a version of XL (the so called

”T’ method”) that works for much bigger values of ε.
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The number of keystream bits required in the attack is about m, and the memory is T 2

bits. In the following table we show possible tradeoffs:

D 4 5 6 7 8 9
Data 223 221 219 218 217 216

Memory 289 256 265 273 281 288

Complexity 2200 2102 296 2102 2112 2122

Up till now, our best attack is in 296, requires 265 bits of memory and only 82 kilobytes
of keystream.

Iterating XL

It is possible to improve this attack slightly by iterating the XL algorithm. Here is one
possible way to do this.
We start with m = 1.6 · 218 keystream bits. The probability that all the corresponding
m approximations of degree 4 are true is (1− 1

217 )m ≈ 2−4.62. This means that the whole
attack will be repeated on average 24.62 times.
Now we apply the XL algorithm with D = 5, i.e. we multiply each equation by nothing or
one of the variables. We have R = 129·1.6·218. The goal is however not to eliminate most
of the terms, but only all the terms that contain one variable k0. Let T ′ be the number
of terms in T that does not contain the first variable k0. We have T =

∑D
i=0

(n
i

)
and

T ′ =
∑D

i=0

(n−1
i

)
. The number of remaining equations of degree K ′ = 5 that contain only

n′ = 127 variables will be R− (T −T ′) = 129 · 1.6 · 218−
∑5

i=0

(128
i

)
+
∑5

i=0

(127
i

)
= 225.37.

We have R′/(T − T ′) = 5.06 and the elimination takes the time of 7 · T log27/64 = 275.5.
Then we re-apply XL for K = 5, n′ = 127, m′ = R − (T − T ′) = 225.37 and D = 6. We
have R′/T ′ = 1.021 and XL works with the complexity of 287.59. The complexity of the
whole attack will be: 24.62

(
275.5 + 287.6

)
= 292.2 CPU clocks.

Thus the best attack is now in 292, it requires still 265 bits of memory, and now only 51
kilobytes of keystream.

Comparison with other attacks

This attack is much better than the generic purpose time/memory/data tradeoff attack
described by Shamir and Biryukov in [23], that given the same number of keystream
bits, about 219, will require about 2109 computations (in pre-computation).
Our attack is sometimes better, and sometimes worse than the Mihaljevic and Imai
attack from [18]. On one side, for example, in [18], given much more data, for example
248 bits, and in particular at least some 32 consecutive bits of the keystream, and given
the same quantity of memory 264, the key can be recovered with a pre-computation of
280 and processing time in 232. On the other side, if only the key stream does not contain
32 consecutive bits, only our attack will work. Similarly, if only the keystream available
is 219, then the Mihaljevic and Imai attack from [18] will require a pre-computation of
about 2109, exactly as in the generic tradeoff attack from [23].
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7 Extensions, Generalizations, Combination with Other Attacks

Improved Elimination Methods. One should expect that a careful implementation
of our attack might be much faster. For this one should use a more careful elimination
algorithm, that will generate the equations in a specific order and will eliminate monomi-
als progressively so that they are not generated anymore. It seems that such algorithms
exist, see for example the Jean-Charles Faugère’s Gröbner bases algorithm F5/2 [8, 9].
Variants of Toyocrypt. Our XL-based attacks can cryptanalyse not only Toyocrypt
but also many variants of Toyocrypt that resist to all known attacks. For example, if the
in Toyocrypt we replace the bilinear part of f by a random quadratic form, such ”guess-
and-find” attacks as in [18] will not be possible anymore, still our XL-based higher degree
correlation attack works all the same. The same is true when we leave the quadratic part
unchanged and add to f some terms of degree 3 and 4 in variables x2, x4, . . .. It is also
possible to see that if the known keystream contains only sparsely distributed bits, and
does not contain 32 consecutive bits, the ”guess-and-find” attack from [18] does not work
anymore, and our attack still works.
More Advanced Higher Order Correlation Attacks. One should not underesti-
mate the power of the higher order correlation attacks. This is because the XL attack
above can be combined with almost any kind of fast correlation attack, another higher
order correlation attack, or other attacks such as Anderson’s augmented function at-
tacks from [1]. For example, let us assume that for Toyocrypt we know several linear
approximations for all the si that appear in the term of degree 17 of f . Assume that all
these approximations allow to predict when the corresponding si = 1 with a probability
only vary slightly smaller than 1/2. Even if this deviation from 1/2 are very small, the
product of all the 17 will be equal to 1 with a probability significantly smaller than 2−17.
Thus, in our attack described above, we will be able to select in the keystream m bits,
for which K = 4 and ε is smaller. This will strictly decrease the complexity of our attack.

8 Conclusion

In this paper we studied higher order correlation attacks on stream ciphers. Our approach
is to reduce their cryptanalysis to the problem of solving an overdefined system of mul-
tivariate equations. In order to solve such systems of equations, we studied an extension
of the XL algorithm proposed at Eurocrypt 2000 for the case of quadratic equations
[25]. The problem about XL is that it is heuristic, not all equations that appear in XL
are linearly independent, and thus it is somewhat difficult to say to what extend the
XL algorithm works. In this paper we showed that we are always able to explain the
origin of the linear dependencies that appear in XL and to predict the exact number of
non-redundant equations in XL. We do not have a proof that this prediction is always
correct, but for largely overdefined systems there is no doubt that XL will work exactly
as predicted.
From our results on XL, we presented a new attack on the Toyocrypt stream cipher
submitted to the Japanese Cryptrec project. It is a 128-bit stream cipher, that at the
time of submission of Toyocrypt was claimed to resist to all known attacks on stream
ciphers. It is one of a few accepted to the final phase of Cryptrec. We reduced the problem
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of recovering the secret key of the cipher to the problem of solving a largely overdefined
system of multivariate equations of degree K = 4. In our best version of the XL-based
higher-order correlation attack we have the parameter D = 7 and since D < 2 ∗K, from
our theory, and the simulations done on XL with similar parameters, we expect that all
the equations generated in XL will be linearly independent, i.e. there is no doubt that
the attack will work exactly as described.
Our faster attack on Toyocrypt requires 292 CPU clocks for a 128-bit cipher. This com-
plexity can be achieved using only a 51 kilobytes of the keystream and 265 bits of memory.
Other tradeoffs are possible and our new attack is in many cases the best attack known
on Toyocrypt.
We conclude that higher order correlation immunity, should be taken more seriously than
previously thought, in the design of stream ciphers.
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A The Analysis of XL Algorithm

A.1 Common Conventions and Notations

In this paper we study solving systems of m multivariate equations with n variables over
a small finite field GF (q). the total degree of the equations is K ≥ 2. We will use very
similar notations that in [25]. The variables will be usually denoted by the xi and belong
to a small finite field GF (q) with q = 2 unless otherwise stated. When q = 2 the equations
contain no powers of xi bigger than 1. We will assume that we want to solve the system
for one particular output b = (b0, . . . bm−1), known in advance, and if fi(x0, . . . xn−1) are

the equations, we will systematically put li(x0, . . . xn−1)
def
= fi(x0, . . . xn−1) − bi so that

the system to solve is:

A :


l0(x0, . . . xn−1) = 0

...
lm−1(x0, . . . xn−1) = 0

In XL we will always assume that the system has one and unique solution.

The MS Problem and the MQ Problem

We assume that all the multivariate equations are of bounded degree ≤ K, i.e. they can
also include terms of lower degrees.
We call the MS the problem of order K over GF (q) the problem of finding one
(but not necessarily all) solutions, to such system of m multivariate equations with n
variables over GF (q). MS stands for ”Multivariate Solving” or ”Multivariate System”.
Following [25], we call MQ the MS problem of order 2. MQ stands for ”Multivariate
Quadratic” The MQ problem is NP-hard, see [11, 21]. Therefore the general MS problem
is also NP-hard.

Manipulating the Equations

We will frequently refer to the equation li(x0, . . . xn−1) = 0 as simply the equation li.
Because the right hand of all our equations is always 0, it is very useful to identify a
multivariate polynomial and an equation that says it is equal to 0. Thus the equation
x0 · l2(x0, . . . xn−1) = 0 will sometimes be referred to as simply the equation x0l2. We
observe that each solution x that satisfies all the equations li, also does satisfy the
equations such as xilj and in general any linear combination of products of the form∏

i x
ri
i · lj .

We say that the equations of the form
∏k

j=1 xij · li = 0, with all the ij being pairwise
different, are of type xkl, and we call xkl the set of all these equations. For example the
initial equations A are of type l.
We also denote by xk the set of all terms of degree exactly k,

∏k
j=1 xij . It is a slightly

modified extension of the usual convention x = (x1, . . . , xn−1). We define x0 = {1}.
Let D ∈ IN. We consider all the polynomials

∏
j xij · li of total degree ≤ D. Let ID be the

set of equations they span. ID is the linear space generated by all the xkl, 0 ≤ k ≤ D−K.
We have ID ⊂ I, I being the ideal spanned by the li (I could be called I∞).
We call T the set of monomials, including the constant monomial, that appear in all the
equations of ID, T =

⋃D
i=0 xi. We will call T the cardinal of T .
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A.2 The Basic Principle of XL

Let D be the parameter of XL algorithm. It is easy to extend the XL algorithm described
in [25] for K = 2, to the general case K ≥ 2:

Definition A.2.1 (The XL algorithm). Execute the following steps:

1. Multiply: Generate all the products
∏k

j=1 xij · li ∈ ID with k ≤ D −K.
2. Linearize: Consider each monomial in the xi of degree ≤ D as a new variable and

perform Gaussian elimination on the equations obtained in 1.
The ordering on the monomials must be such that all the terms containing one
variable (say x1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the powers of
x1. Solve this equation over the finite fields (e.g., with Berlekamp’s algorithm).

4. Repeat: Simplify the equations and repeat the process

A.3 The Necessary Condition for XL to Work

The XL algorithm consists of multiplying the initial m equations li by all possible mono-
mials of degree up to D −K, so that the total degree of resulting equations is D. With
the notations introduced above, this set of equations is called ID. Let R be the number
of equations generated in ID and T be the number of all monomials.
We have, (the first term is dominant):

R = m ·
(

D−K∑
i=0

(
n

i

))
≈ m ·

(
n

D −K

)
It is likely that not all of these equations are linearly independent, and we denote by
Free the exact dimension of ID. We have Free ≤ R. We also have necessarily Free ≤ T .
The basic principle of XL is the following: for some D we will have R ≥ T . Then we
expect that Free ≈ T , as obviously it cannot be bigger than T . More precisely, following
[25], when Free ≥ T −D, it is possible by Gaussian elimination, to obtain one equation
in only one variable, and XL will succeed.

The Saturation Problem in XL

The main problem in XL, is that, in general, not all the equations generated in XL are
linearly independent. In the complexity evaluation of [25] the authors assume that ”most
of the equations are linearly independent”. Obviously for XL algorithm to work it is not
necessary that ”most of the equations are linearly independent”. It is sufficient that for
some D, the number Free of linearly independent equations satisfies Free ≥ T − D.
This is called the saturation problem. In [19], T. T. Moh states that ”From the theory of
Hilbert-Serre, we may deduce that the XL program will work for many interesting cases
for D large enough”.
In Section 4 T. T. Moh shows a very special example on which XL always fails, for any
D [19]. This example is very interesting however we consider here random systems of
quadratic (or degree K) equations, i.e. we look at the behaviour of XL on most of the
systems, and not on some very special systems.
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In Section 3 the author presents an argument that is apparently wrong. He assumes
D � n in a formula in which D = O( n√

m
). He shows that, apparently Free/R ≈

(n+D)(n+D−1)
D(D−1)m = w, and it is obvious that w → 1

m when D → ∞. However in XL, D is
never as big as n, if we assume that we have D ≈ n√

m
as in the previous section, we get

w ≈ 1. The conclusion of T.T. Moh is inappropriate, not to say incorrect.
We will see in this paper that in many interesting cases, all or most of the equations
are linearly independent in XL, and moreover we will be able to explain (and predict)
exactly the number (and the origin) of all the linear dependencies.

A.4 Analysis of XL Extended to Solving Equations of Degree K

Let µ be the proportion of linearly independent equations generated in XL. If µ is not
negligible (this is confirmed by our simulations, see Appendix B). We have

T =
D∑

λ=0

(
n

λ

)

R = m

(
D−K∑
λ=0

(
n

λ

))
.

If µ is the proportion of the equations that are linearly independent, µ = Free/R, then
XL algorithm will succeed if R× µ ≥ T , i.e. when

m

(
D−K∑
λ=0

(
n

λ

))
× µ ≥

D∑
λ=0

(
n

λ

)
.

If we consider only the two main terms of the summation, this gives:

m

(
n + 1

D −K

)
× µ ≥

(
n + 1

D

)
Therefore we get:

m
(n−D + K + 1) · . . . · (n−D + 2)

D(D − 1) · . . . · (D −K + 1)µ

Then assuming that D � n we get:

D ≥ about
n

m1/Kµ1/K
.

Then the total complexity of the XL attack is about:

Tω ≈
(

n

n
/
(mµ)1/K

)ω

with ω ≤ 3 being the exponent of the Gaussian reduction.
Asymptotically this is expected to be a good evaluation, at least when m = εnK with
ε > 0.
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B About the Exact Dimension of ID in XL

Let Free be the dimension of ID, i.e. the maximum number of equations that are linearly
independent in XL algorithm. In the paper that describes XL, the authors demonstrate
that XL works with a series of computer simulations over GF (127) . In this section we will
present some computer simulations on the XL algorithm over GF (2). No such simulations
has been published so far. Apparently we will be able to predict the exact value Free
obtained in these simulations. We will propose a formula for Free, that though not
rigourously proven to work, is confirmed with good precision in all our experiments.
In all the simulations that follow, we pick a random system of linearly independent equa-
tions yi = fi(x0, . . . , xn−1) of degree ≤ K (non-homogenous). Then we pick a random
input x = (x0, . . . , xn−1) and we modify the constants in the system in order to have a
system that gives 0 in x, i.e. we write a system to solve as ∀ i li(x0, . . . , xn−1) = 0.

B.1 The behaviour of XL for K = 2 and D = 3.

In general it is not possible that Free = R. One reason is that Free cannot exceed T .
We have therefore always

Free ≤ Min(T,R)

We have done various computer simulations with D = 3 and in our simulations, for
K = 2 and D = 3, we have always7 Free = Min(T,R)− ε with ε = 0, 1, 2 or 3.
In the following table we fix n and try XL on a random system of m linearly independent
equations with growing m and with a fixed D.

K 2 2 2 2 2
n 10 10 10 10 10
m 10 14 16 17 18
D 3 3 3 3 3
R 110 154 176 187 198
T 176 176 176 176 176

Free 110 154 174 175 175

2 2 2 2 2
20 20 20 20 20
20 40 50 60 65
3 3 3 3 3

420 840 1050 1260 1365
1351 1351 1351 1351 1351
420 840 1050 1260 1350

2 2
64 64
512 1024
3 3

33280 66560
43745 43745
33280 43744

Figure 1: XL simulations for K = 2 and D = 3.

n number of variables.
m number of equations.
D we generate equations of total degree ≤ D in the xi.
R number of equations generated (independent or not).
T number of monomials of degree ≤ D

Free number of linearly independent equations among the R equations.
� XL will work when Free ≥ T −D.

7 Actually Free is almost always the minimum of the two functions, around the point where the two
graphics meet, we sometimes observed a ”smooth” transition, and int his case we observe that Free =
Min(T, R) − ε with ε = 0, 1, 2 or 3. In our simulations the smooth transition is visible for n = 10,
m = 16, D = 3.
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B.2 The behaviour of XL for K = 2 and D = 4.

When D = 4 we do not have Free = Min(T,R) anymore.

K 2 2 2
n 10 10 10
m 5 10 11
D 4 4 4
R 280 560 616
T 386 386 386

Free 265 385 385

2 2 2 2 2 2
20 20 20 20 20 20
20 24 28 30 32 36
4 4 4 4 4 4

4220 5064 5908 6330 6752 7596
6196 6196 6196 6196 6196 6196
4010 4764 5502 5865 6195 6195

2
40
128
4

105088
102091
96832

Figure 2: XL simulations with K = 2 and D = 4 (same notations as for Figure 1).
We see that for D = 4 most of the equations are linearly independent. We observed that
for K = 2 and D = 4 we have always:

Free = Min

(
T,R−

(
m

2

)
−m

)
− ε with ε = 0, 1, 2 or 3.

The fact that Free = R−
(m

2

)
−m− ε when R−

(m
2

)
−m ≤ T , means that, in all cases,

there are
(m

2

)
+ m linear dependencies between the equations in R.

We are able to explain the origin (and the exact number) of these linear dependencies.
Let li be the equations taken formally (not expanded), and let [li] denote the expanded
expression of these equations as quadratic polynomials. Then we have:

li[lj ] = [li]lj
For each i 6= j, the above equation defines a linear dependency between the equations of
XL. This explains the

(m
2

)
dependencies.

Example: For example if l1 = x1x3 + x4 and l5 = x2x1 + x4x7 then the notation
l1[l5] = [l1]l5 denotes the following linear dependency between the lixjxk:

l1x2x1 + l1x4x7 = l5x1x3 + l5x4.

There also other dependencies. They come from the fact that we have:

li[li] = li

This explains the remaining m dependencies. For example if l1 = x1x3 + x4 we obtain
that: l1 = l1x1x3 + l1x4.

B.3 Tentative Conclusion on XL and More Simulations for K ≥ 2 and
D ≥ 4.

From the above simulations, we see that, at least for simple cases, we are always able to
predict the exact number of linearly independent equations that will be obtained. From
the above simulations we conjecture that:
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Conjecture B.3.1 (Behaviour of XL for D < 3K).

1. For D = K..2K − 1 there are no linear dependencies when R ≥ T and we have
Free = Min(T,R)− ε with ε = 0, 1, 2 or 3.

2. For D = 2K..3K − 1 there are linear dependencies and we have

Free = Min

(
T,R−

(
D−2K∑

i=0

(n
i

)) ((m
2

)
+ m

))
− ε with ε = 0, 1, 2 or 3.

The factor
((m

2

)
+ m

)
is due to the linear dependencies of type li[lj ] = [li]lj and li[li] =

li as explained above. Moreover when D > 2K there are other linear dependencies
that are products of these by monomials in xi of degree up to D− 2K, and to count
these we have multiplied their number by a factor

(∑D−2K
i=0

(n
i

))
.

3. It is also possible to anticipate what will happen for D ≥ 3K. However, it is more
complex, and in this paper we do not need to know this.

Up till now, this conjecture is pure guessing, as we did not yet consider systems with
K > 2. Here is a series of simulations with such systems.

K 3 3 3 3 3 3
n 10 10 10 10 10 10
m 10 10 10 10 10 10
D 3 4 5 6 7 8
R 10 110 560 1760 3860 6380
T 176 386 638 848 968 1013

Free 10 110 560 846 966 1011

3 3 3 3 3
16 16 16 16 16
16 16 16 16 16
3 4 5 6 7
16 272 2192 11152 40272
697 2517 6885 14893 26333
16 272 2192 11016 26330

Figure 2: XL simulations with K = 3 (same notations as for Figure 1).

K 4 4 4 4 4 4 4
n 10 10 10 10 10 10 10
m 10 10 10 10 10 10 10
D 4 5 6 7 8 9 10
R 10 110 560 1760 3860 6380 8480
T 386 638 848 968 1013 1023 1024

Free 10 110 560 966 1011 1021 1022

4 4 4 4 4
16 16 16 16 16
16 16 16 16 16
4 5 6 7 8
16 272 2192 11152 40272

2517 6885 14893 26333 39202
16 272 2192 11152 39200

Figure 3: XL simulations with K = 4 (same notations as for Figure 1).
All these simulations confirm our Conjecture B.3.1.


