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Abstract

This paper presents a new, powerful statistical testing of symmetric ciphers and hash func-
tions which allowed us to detect biases in both of these systems where previously known tests
failed. We first give a complete characterization of the Algebraic Normal Form (ANF) of ran-
dom Boolean functions by means of the Mobius transform. Then we built a new testing based
on the comparison between the structure of the different Boolean functions Algebraic Normal
Forms characterizing symmetric ciphers and hash functions and those of purely random Boolean
functions. Detailed testing results on several cryptosystems are presented. As a main result we
show that AES, DES Snow and Lili-128 fail all or part of the tests and thus present strong
biases.

Keywords: Boolean function, statistical testing, symmetric cipher, randomness, hash function,
Mobius transform, Walsh Transform.

1 Introduction

Randomness is the ground property of cryptography. For the attacker, any quantities produced by
a given cryptosystem must look as unpredictable as possible. It means that these quantities have to
be of sufficient size and ”be random” in the sense that the probability of any particular value being
selected must be as weak as possible to preclude a cryptanalyst from gaining advantage through
optimed search strategy based on such probability [21, p 169].

From a general point of view, any symmetric cipher and any hash function must be designed
as a pseudorandom bit generator (PRBG) relatively to each of its output bits.

Two important requirements are then to be satisfied: the output sequences of a PRBG must
be statistically indistinguishable from truly random sequences and the output bits must be un-
predictable to an attacker with limited computing facilities. Therefore many different statistical
tests have been proposed and are usually implemented to evaluate these two requirements. His-
torically we must cite Golomb’s randomness postulates [18]. These tests have been designed as
necessary but not sufficient tests to check if a shift register sequence statistically behaves properly.
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Yet statistically good according to these postulates, this kind of sequence has been shown very pre-
dictable when using the Berlekamp-Massey algorithm [23]. This is the illustration that randomness
is uniquely defined relatively to the statistical tests we may use.

Many other statistical tests have been proposed in order to better improve what may be con-
sidered as "random”. Among many others, let us cite those that mainly implemented: frequency
test, serial test, poker test, runs test and autocorrelation test [2, 14, 20], Maurer’s universal sta-
tistical test [24], repetition test [17] (for a more detailed bibliography on statistical tests used in
cryptography see [21, pp 188-189] and [5]).

To be precise, these tests are primarily intended for stream ciphers (or block ciphers in modes
as stream ciphers) whose output sequences are long enough to apply probability results (essentially
the central limit theorem). When dealing with pure block ciphers or with hash functions, the scope
of these tests could be questionned. In this latter case, the concepts of diffusion and confusion
[30] are generally preferred (it is clear that one could define them from a statistical point of view).
However these concepts are defined either rather empirically or too theoretically (for example
through equivocation of the key K about the ciphertext V).

All the recently proposed symmetric cryptosystems and hash functions can be considered as
reasonably satisfying all the known randomness requirements (i.e. pass all the known statistical
tests). Now the essential part of the cryptanalyst’s work is to find an exploitable bias, due to an
unknown design flaw, that none of the up to now known test detected. For that, the cryptanalyst
generally first designs a new hypothesis testing based on a new test. Let us recall that in fact
randomness is a theoretical indeed ”philosophical” concept. Practically speaking it can only be
determined and defined relatively to the set of statistical tests used to evaluate it. Randomness
alone is a nonsensical concept.

In this paper we present a new hypothesis testing based on a x? distribution and called Statistical
Mobius Analysis. More precisely we define as working statistic the number of monomials of degree
exactly d in the Algebraic Normal Form (ANF) of all the Boolean functions modeling each of the
output bits. The set of these d-monomials effectively present in the ANF are practically computed
by means of the Mobius transform. A secure cryptosystem has a fixed distribution determined
by general results on random Boolean functions. Then one-sided tests allow us to check if the
constituent Boolean functions are truly random.

These tests have been implemented for a few recently proposed stream ciphers and block ciphers,
as well as for the main hash functions. All are known to have passed all the previously known
statistival tests and thus are considered as having very good random properties. Out main results
is that famous cryptosystems such AES, DES and Lili-128 did not pass all or part of our tests.

Section 2 will present the necessary preliminaries and give the characterization of the Algebraic
Normal Form (ANF) of random Boolean functions. In particular we complete the results presented
in [26], make them more practical and give new results on the total degree of a Boolean function.
Section 3 presents the new test we designed whilst Section 4 gives detailed numerical results that
have been obtained for a few stream ciphers (Lili-128, Snow, BGML and RC4), block ciphers (DES
and AES) and hash functions (SHA-0, SHA-1, Ripe-MD, Ripemd160, Haval, MD4 and MD5).
Section 5 finally concludes and presents future work to exploit these biases.

2 Characterization of Boolean Functions and Results

In this section we present a new statistical way of describing Boolean functions by use of their ANF.
After the characterization itself with the Mobius transform, we deduce results on the balancedness
and correlation properties with the help of the Walsh transform. These results are commented on



in the particular case of Bent functions.

2.1 Structure of the Algebraic Normal Form

A Boolean function is a function f from F} to F,. The number of such functions is 22". We define
a random Boolean function as a function f whose values are independent, identically distributed
random variables that is to say
1
V(z1,22,...,2,) €Fy,  Plf(x1,22,...,2,) =0] = 3 (1)
In other words each f(z1,%2,...,2,) is a Bernoulli random variable of parameter % The corre-
sponding probabilistic law will be denoted B(p) whith p = % for our present case.
The weight of a Boolean function over FJ is defined by

wi(f) = {z € By |f (z) = 1}].

Then a Boolean function will be said to be balanced if wt(f) = 2" . Note that a random Boolean
function, as defined above, may be not balanced. In fact we will give the general probability for
such a function to be balanced.

The Algebraic Normal Form (ANF) of f is the multivariate polynomial given by

flx1,me,.. . xy) = @ ay ", ay, € Iy

ucly
where u = (u1,ug,...,u,) and z* = [}, 2;"". The a, are given by the Mobius transform of f:
z=<u

where < denotes the partial order on the Boolean lattice, that is to say that a < 3 if and only if
a; < B forall 1 < ¢ < n. A monomial a,z" of the ANF will then be said of degree k if a,, = 1
and if wi(u) = k where wt(.) denotes the Hamming weight. With all this notation we now can
formulate our first result:

Proposition 1 The algebraic Normal Form (ANF) of a random Boolean function f from Fy
Fy has 2"~ monomials in average. For each k such that 0 < k < n, there are an average of %(
monomials of degree k.

to
)

Proof.

A given monomial z; z;, ... x;, of degree k will be part of the ANF if and only if a,, = 1 where
the support of u (that is to say the set of indices j such that u; = 1 and denoted supp(u)) is
{i1,12,...,i}. Now we have

k k k k
w = fO)e@fe)e B P fle,ee)|e...0f(@e) (3)
j=1 I=1 j=1,j#l =1
where 0 = (0,0,...,0) and e; is the n-uple whose only its i-th coordinate is non zero. The right
side of Equation 3 has Z§:1 (’;) = 2F terms. a, = 1 if an odd number of terms are each equal to



1. There are 2¥~1 such odd configurations. Each of them according to 1 has probability 2% to be

equal to 1. Whence we have

1 1
— _ ok—1 —
P[au—l]—Z X2k_§
Thus the number of monomials of degree k in the ANF will be

Pla, = 1] x <Z> = % x <Z>

We can in fact generalize this results with the following theorem:

Theorem 1 With the notation used in Proposition 1, the number ny of monomials of degree k has
normal distribution with mean value and variance given by:

Efng] = % (Z) and Ving] = i (Z)
Proof.

The proof is straightforward when considering that a,,, for all u € F} is a Bernouilli random variable
with parameter 3, where E[a,] = 4 and V[a,] = 1. Since ny = > wt(u)—k Gu, for large enough value
of the number of u of weight k, the Central Limit Theorem gives the result. O
This proposition allows to study the randomness properties of a Boolean function. Let us consider
a function f used for the feedback of a shift register of length L. If f is constant (its ANF has
only one monomial), the output will not be random at all. In the case of the linear feedback (the
ANF of f is of degree 1 and has at most n monomials), the randomness properties are limited: the
linearity properties are not suppressed, and combinatorial information is easy to get (for details see
[18]). Moreover, it is very easy to reconstruct the feedback polynomial with only 2L output bits
[23]. This is due to the fact that linear functions have very limited randomness properties.

In other words, if we consider x = (z1,...,2,) and y = (y1,...,y,) such that (e.g.) f(z) =
f(y) =1, the less random will be the function, the easier will be the extraction of information on
z and y.

Example 1 Let us take f(x1,29) = 1 ® x9. Any © = (r1,22) and y = (y1,y2) with © # y such
that f(x) = f(y) = 1 will satisfy ©1 ®y1 = 1. This comes from the fact that the values of the truth
table are ”organized” and not "randomly spread” into this table.

Proposition 1 gives us the following criterion for Boolean functions suitable for cryptographic ap-
plications.

Corollary 1 A Boolean function used for cryptographic applications and presenting the best trade-
off in terms of its cryptographic properties must have a degree as high as possible.

Proof.

This directly comes from the fact that a n-variable random Boolean function in average has its term
of degree n with probability % and will contain % terms of degree n — 1. According to the upper
bound of the degree [31] of function presenting the best trade-off in terms of correlation immunity,
balancedness and nonlinearity we have for a t-correlation immune function:

deg(f(xlax%"'axn)) S n—t—1.



Imposing to the function to have given properties lowers the algebraic degree. In other words
combinatorial structures are introduced while randomness is lessened. In the search for the best
possible trade-off, to keep good randomness properties forbidding to get combinatorial information
on the function input, the function should have the highest possible degree. O

As a consequence, Boolean functions designed in [11] are more suitable for cryptographic applica-
tions than those presented in [22, 32] since these latter have a slightly lower degree. This fact has
been confirmed by our tests when considering output sequences produced by nonlinear feedback
shift registers. The statistical results are slightly but significantly better for the first one which
have been used in the design of COS ciphers [12].

2.2 Characterization of the Walsh Coefficients

The Walsh Hadamard transform of a Boolean function f refers to the following transformation:

VueFy, Xf(u) = Z (—1)f@+<zu>
zelFy

where < z,u > denotes the usual scalar product. A well-known result allows to characterize the
correlation immunity of f with the Walsh Hadamard transform:

Proposition 2 [33] A Boolean function f is t-order correlation immune if and only if
Vu ey, 1 <wt(u) <t Xf(u) =0

Moreover f is balanced if and only if X7(0,0,...,0) = 0. When balanced and ¢-correlation immune,
f is said t-resilient.

Proposition 3 Let f a random Boolean function over T3 with n > 5. For all u € Fy, X7(u) is a
random wvariable which has Gaussian distribution with mean value 0 and variance 2".

Proof.
First we can write

)?}(u) _ Z (_1)f(x)+<:v,u>
= 2”—2.Z(f(m)+<x,u>)
zelfy

Since z and f(z) are independent, we can consider < z,u > +f(z) as independent, identically
distributed random variables for all x as well. Let us note Y = EIE]FQ (f(x)+ < z,u >). For

n > 5 (that is to say 2" > 30), due to the central limit theorem [6], Y has a Gaussian distribution
LG(E,0?) with

E[Y] = 2"P[f(z)+ < z,u >=1]=2"""!
(oy)? = 2"P[f(z)+ < z,u >= 1]P[f(z)+ < z,u ># 1] = 2" 2

Hence X7(u) has Gaussian distribution with mean value

B[ (w)] = 2°(1 - 2P[f(a)+ < z,u >=1]) = 0



and variance
0? = 4.2"P[f(z)+ < z,u >= 1|P[f(z)+ < z,u ># 1] = 2"

If ® denotes the normal distribution function,

and if py = @(2%1_1) — 1 we then can state

Lemma 1
P[f balanced | = py.

Proof.
In case of balanced Boolean function, we must have x7(0,0,...,0) = 0 By definition x7(u) VYu € Fy
is even. We thus can write

Plx7(u) =0] = P[0 < xf(u) < 2]

The rest is straightforward to proove with Proposition 3. O

Remark.- This result is an accurate approximation of the ”exact” probability for a function to

(23:)

be balanced given by p = 3z—=. Table 1 compares exact probability with that computed with
Theorem 1 for 5 < n < 19. Note that computing exact probability p is highly time consuming
while computation time is negligible for pg.

| p [ p Jnl p» | p [nl p | p |
0.1399 0.1381 10 | 0.02493 0.02491 15 | 0.004408 | 0.004407
0.09935 | 0.09870 || 11 | 0.01763 0.01762 16 | 0.003117 | 0.003116
0.07039 | 0.07015 || 12 | 0.01247 0.01246 17 | 0.002204 | 0.002203
0.04982 | 0.49738 || 13 | 0.008815 | 0.008814 || 18 | 0.001558 | 0.001558
0.03524 | 0.03521 || 14 | 0.006233 | 0.006233 || 19 | 0.001102 | 0.001101

© 0o~ o o 3

Table 1: Comparison between exact probability p and approximate probability py for a function to
be balanced

3 The New Statistical Testing

We are now going to present the different tests we built up to evaluate new statistical properties
of symmetric cryptosystems and hash functions. Let us now consider such a system and precise
the context we choose. Let be a secret key K = (kg, k1,...,kn—1). A stream cipher can be seen as
follows: each output bits 7 generated from the secret key K can be expressed by a unique ANF (by
means of the Mobius transform defined by Equation 2).

In other words the N-bits output sequence can be described by a family of NV Boolean functions

(ft(K))o<t<n = (fo(K), f1(K),..., fn-1(K))

where f;(K) denotes the i-th bit produced by the system and modelled as a polynomial in variables
k; (ANF). Each output bit is a Boolean function f; : Fy — o



Similarly let us represent a block cipher with n-bit key K and working on m-bit blocks. In the
same way, but with the different output functions being evaluated on the key space and on the
plaintext space P = (po,p1,--.,Pm—1), for a block cipher C, we then have:

C= (607617"'7cm71) = (fU(Ka‘P)afl(Kv-P)?"'7fN71(K7P))

Each of the m ciphertext bits is a Boolean function f; : F," ™™ s Ty
Finally a hash function H : F; — F' will have its m-bit message digest of block B =
(bo, b1,...,by—1) represented by:

(he(B))o<t<m = (ho(B), h1(B), ..., hm—1(B))

In the rest of this paper we will use indifferently the term ”output bits” and ”output Boolean
Functions” (or output ANFs for short) to describe the quantities produced by the cryptosystem
we consider. At last we will consider that the different output Boolean functions (or bits) are
statistically independant. It is precisely the result stated by previous usual, known tests.

The complete output ANF cannot be computed since it contains in average 2"~ monomials. It
would require exponential memory and computing time complexity. For our tests we only focus on
the monomials of degree at most 3 and need only to compute the d-truncated ANF, that is to say
the partial ANF whose coefficients are effectively computed up to degree 3. From a practical point
of view, we use Formula 3 to produce them. As a result, we observe in each ANF's, 7i; monomials
of degree exactly d.

Let us now note H{ the statistical hypothesis that the number 7,4 of monomials of degree exactly
d is distributed according to the Theorem 1. In other words the cryptosystem pass our tests and
thus exhibit no particuliar structural, statistical bias for the aspect we consider when satisfying
this hypothesis.

We will not recall basic probability and statistics theory. We suppose the reader familiar with
them (for detailed presentation see [6] and [21, Chap 5.4]).

3.1 The Affine Constant Test

Out hypothesis is then denoted HY. According to Theorem 1, the probability for the affine constant
ap to be represented in each of the output ANFs is p = % Equivalently it means that the number
of output Boolean functions having ag = 1 in their ANF has normal distribution N (%, @
N is the total number of output ANFs.

If Xg, the number of times ag = 1, is the statistic we consider over the sample output S of NV

ANFs, we can now describe the following two-sided test, called the Affine Constant Test:

) where

1. Compute Xg over S.

2. Let us fix a significance level « (i.e. probability of rejecting HJ when it is true) and choose
a threshold z, so that for a statistic X of normal standard distribution we have

PIX > 24] = P[X < 14] = %
. _N .
3. If the value Xg = Xs = > & or if Xg < —x, then H{ is rejected (the system fails the test)

2

otherwise H{ is kept (the system passes the test).

In our experiments, we considered o = 0.05,0.01 and 0.001.



3.2 The d-monomial Tests

We are now considering the monomials of degree exactly d in the output ANFs. Our testing is now
denoted H{.
With the notation of Theorem 1, the number of monomials of degree d in a Random Boolean

Function ANF (RBFANF) is a random variable which is N'(5 (%), 34/(}})) distributed. We now

consider two goodness-of-fit, one-sided tests between the expected frequencies (denoted ng) and
those (denoted 74) we observe for the considered cryptosystem.

The first test, Tld consider every different ANF and thus has a rather local scope by giving more
weight to very weak output ANFs. The second one, T2d, groups the N RBFANFs according to a
few numbers of sets or classes. So to summarize, we will use the x? distribution with v degrees of

freedom by considering the sum of the v squared, independent random variables (”37\/*@_3) (i <v)
g

which have by definition standard normal distribution.
In T¢ we have v = N — 1 (i.e. the number of output ANFs) while for 7§ we choose 2 < v < 9.

1. Compute for each of the v random variables n’, and 7}, (n!, is given by applying Theorem 1).

2. Let us fix a significance level « and a threshold value z, (computed directly from the cumu-
lative density function of the x? distribution) so that for a statistic X over a random sample
we would have P[X > z,] = o (when X follows a x? distribution with v degrees of freedom).

3. Compute the statistics D? given by

=1

4. If D? > z, then we must reject Hgl (the system fails the test and thus there is a statistical
bias) otherwise we keep H{ (the system does not present any significative bias).

In our experiments, we considered o = 0.05,0.01 and 0.001.

Test T2d is intended to describe the considered cryptosystem from a global point of view. In
particular it aims at verifying if local biases (detected with Tld) are still really significative at a
more global level. Instead of dealing with the observed frequencies ﬁfi of d-monomials for each of
the NV output ANFs we rather are interested with the number of output ANFs whose number 74
belongs to a given, predefined! intervall [a,b[. The expected frequency for each class is computed
from Theorem 1 by applying basic probability results.

4 Testing Results on Symmetric Systems and Hash Functions

4.1 Stream Ciphers

We will here mainly focus on two stream ciphers that have been proposed for the NESSIE Open
Call for Cryptographic Primitives: Lili-128 and Snow. For information on NESSIE Project and
these two algorithms see [25]. Other stream ciphers have been tested or are currently under testing.
Table 2 summarizes results for a few of them. For complete, detailed results see [7]. We considered
the first N = 6016 output bits in our experiments. It is worth noticing that:

'Tn fact according to the probability theory [6], the only constraint is that the expected frequency for each class,
given by N.P[a < ng < b] must be greater than 5; otherwise the intervalls can be freely chosen



e All the tested stream ciphers pass the Affine Constant test except Lili-128.

e Lili-128 exhibits extremely strong biases. Table 3 presents the results for this stream cipher.
These biases have been analyzed and exploited for an operational cryptanalysis in [10] (see
Section 5 concerning the cryptanalysis part).

e Snow exhibits strong biases too but only when considering global statistical behavior. Unfor-
tunately these biases allowed us to design a complete, operationnal cryptanalysis of Snow [9]
(see Section 5 concerning the cryptanalysis part).

e We can give the following interesting observations based on the comparison of the tests
convergence (that is to say the distance between the estimator and the threshold value; for
details see [19]). The stream ciphers of Table 2 can be sorted according to their relative
"random” quality. For example when considering results of test T} (1-monomials), which is
the most interesting, we have the following ordering (> means "better than”):

Bgml > RC4 > Snow > Lili-128

| AR
Lili-128 | fail | fail | fail | fail
Snow pass | pass | fail | fail
RC4 [27] | pass | pass | pass | pass
Bgml [25] | pass | pass | pass | pass

Table 2: Stream Ciphers: Tests Results (significance level a = 0.05,0.01,0.001)

| | o | | 0 | 1|
D? | 39,344.03 | 400,839.93 | 667729.02 | 1,028,048.45
X2 05 6196.27

X201 6272.76

X3.001 6349.15

Table 3: Lilil28: Experimental results for tests T and Ty

4.2 Block Ciphers

We mainly focus on the DES [13] and the AES [1]. For block ciphers we considered both the
encryption ANFs and the decryption ANFs. Since the output ANF involves both plaintext variables
and key variables, tests T (d = 1,2) have been replaced by tests T} relatively to:

e the number n; of plaintext variables from one side and of key variables from the other side
(denoted respectively T} |p and T{|k).

e the number ny of 2-monomials respectively involving plaintext/plaintext variables, key/key
variables and plaintext/key variables (tests denoted respectively T |pp, T} |kk and T |pk.



4.2.1 The DES

Table 4 summarizes the results of the different tests. Table 5 gives detailed experimental results

| 7 [ 77 [ Tlp [Tk | Tlpp | T{[kk | T [pk |

Encryption with TP pass | fail | pass | pass | fail pass fail
Encryption without IP | pass | fail | pass | pass | fail pass fail
Decryption with TP pass | fail | pass | pass | fail pass fail
Decryption without IP | pass | fail | pass | pass | fail pass fail

Table 4: DES: Tests Results (significance level o = 0.05,0.01,0.001)

of the estimator D? with 63 degrees of freedom. These values are to be compared to theoretical
values x? = 82.52 for & = 0.05, x? = 92.01 for & = 0.01 and x? = 103.44 for & = 0.001. Complete
intermediate data will be found in [7]. It is worth noticing that:

e DES passes the Affine Constant Test in all modes and all significance level.
e The overall statistical quality is better for encryption than for decryption.

e The initial permutation IP improves the overall statistical quality. Nevertheless IP is usually
discarded by cryptology community when considering its cryptanalysis.

e When considering 2-monomials, DES exhibit very strong biases (except for key/key monomi-
als).

4.2.2 The AES

We will focus on the algorithm working on 128-bit blocks and with 128-bit secret key. Results for
other versions can be found in [7] as well as complete intermediate data. Table 6 gives detailed
experimental results of the estimator D? with 127 degrees of freedom. These values are to be
compared to theoretical values x? = 159.59 for o = 0.05, x? = 166.27 for o = 0.01 and x? = 180.61
for & = 0.001. It is worth noticing that:

e AES passes the Affine Constant Test in all modes and all significance level.

e Overall statistical quality of AES (128, 128) is good except for plaintext/plaintext 2-monomials
for which AES fails the test whatever may be the significance level. These biases have been
recently exploited to greatly improve the cryptanalysis of AES (see Section 5).

e Encryption and decryption exhibits quite the same overall statistical properties.

4.3 Hash Functions

We tested the following hash functions: SHA-0 [15], SHA-1 [16], Ripemd160 [4], MD4 [28], MD5
[29], Ripe-MD [3] and Haval [34] (for this latter we tested all the different versions). Extensively
detailed numerical results (due to lack of space) are only available in [7].

All the tested hash functions have passed the tests whatever may be the significance level.
However we can once again give the following interesting observations based on the comparison of
the tests convergence.
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| 7t | 1 | Tlp | Tk [ Tlpp [ THkE | T]lpk |
Encr. + IP | 40.44 | 2662.27 | 54.12 | 29.12 | 1909.14 | 36.46 | 1794.70
Encr. - TP | 46.51 | 2693.27 | 54.12 | 41.17 | 1909.14 | 34.69 | 1817.14
Decr. + IP | 41.03 | 3017.51 | 65.53 | 29.67 | 2287.92 | 36.46 | 1889.92
Decr. - IP | 51.00 | 3005.31 | 65.53 | 41.17 | 2287.92 | 34.69 | 1880.62

Table 5: DES: Values of Estimator D?

| 7 | T [ Tip | Tik | Tilpp | Tilkk | T{Ipk |
Encryption | 59.61 | 1567.91 | 57.84 | 61.51 | 415.20 | 72.34 | 62.39
Decryption | 67.38 | 156.03 | 67.21 | 70.70 | 412.87 | 60.11 | 47.27

Table 6: AES (128, 128): Values of Estimator D?

e The different hash functions can be sorted according to their relative random” quality. For
example when considering results of test T} (1-monomials), which is the most interesting, we
have the following ordering (= means ”better than”):

— 160-bit Message Digest: SHA-1 > (5, 160)-haval > Ripemd160 > (4, 160)-haval > (3,
160)-haval = SHA-0.

— 128-bit Message Digest: (5,128)-haval > Ripe-MD > MD5 > (4,128)-haval = (3,128)-
haval > MD4.

e SHA-1 has indeed better statistical properties than SHA-0, especially when considering the
degree 1. The inclusion of the 1-bit rotation in the block expansion from 16 to 80 words really
improved the randomness properties of the hash function.

e For the Haval family, the random quality increases with the number of rounds.

Table 7 presents the results of the tests T{ and Ty for d = 1,2 and for the 160-bit message digest
hash functions (significance level a = 0.05; let us recall that passing the tests for significance level
« imply passing the test for o/ < a since x2, > x2). All other results will be found in [7].

Tt T? T} T

: 2
Hash Functions ok | X2 ok | X2 ok | X2 ok | X2
SHA-1 76.87 70.89 0.04 0.42

(5,160)-haval 76.34 79.76 0.17 2.02
Ripemd160 77.51 66.72 5.24 2.66
(4,160)-haval 83.52 189.52 74.18 189.52 1.77 5.99 3.51 5.99
(3,160)-haval 83.79 64.28 1.05 5.50
SHA-0 97.08 74.50 3.26 0.42

Table 7: Experimental results for tests T¢ and Ty (d = 1,2, a = 0.05).

5 Conclusion

This paper presented a new statistical testing of symmetric ciphers and hash functions. Where
previous known tests did not exhibit particuliar bias, these new tests reveal structural, statistical
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biases for DES, AES and Lili-128. Other cryptosystems are currently tested and may present
unsuspected biases.

These tests are still rather quantitative tests but allow to detect possible structural weaknesses in
the output ANFs. Current research focuses on more qualitative test involving factorial experiments.
It should provide necessary information to greatly improve previous cryptanalytic techniques. But
it has already been possible to design a completely new, deterministic, OPERATIONNAL (both in
terms of computing time and of number of required output bits) cryptanalysis of Lili-128 and
Snow. The biases we have detected with this new testing, have been successfully converted in
purely combinatorial properties allowing a deterministic cryptanalysis. For the AES, the biases
have been recently exploited to design a new statistical, combinatorial cryptanalysis of AES [8]. In
both cases, the cryptosystems are mainly modelled by special combinatorial designs.
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