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Abstract

Let K be a finite field of 2™ elements. Let ¢4, ¢3,d2, 1 be tame automorphisms
of the n + r-dimensional affine space K®*". Let the composition ¢4pspa¢; be w. The
automorphism 7 and some of the ¢;’s will be hidden. Let the component expression of = be
(my(z1, s Tnar)s =+ Tnar (T, Tpar)). Let the restriction of 7 to a subspace be # as
T = (ﬂ-l(xl’...’xn,o’...,0)’...,ﬂ-n_i_r(wl,...,wn,o’...,o)) :(fla"'afn—i-r) K KT,
The field K and the polynomial map (f1,---, fntr) will be announced as the public key.

!

Given a plaintext (z},---,z.) € K", let y; = fi(z],---, z},), then the ciphertext will be
(Wi, yhyr) € KM, Given ¢; and (v}, -+, y,.,), it is easy to find ¢; " (v}, - -, Yhir).
Therefore the plaintext can be recovered by (zi,...,2},0,---,0) = ¢1_1¢;1¢3_1¢4_17Ar(m’1,

cxl) =0 oy o g (L Ynyr)- The private key will be the set of maps {¢1, ¢,
¢3,04}. The security of the system rests in part on the difficulty of finding the map =
from the partial informations provided by the map 7 and the factorization of the map =

into a product (i.e., composition) of tame automorphisms ¢;’s.

keywords: tame automorphism, public key system, public key, private key,
plaintext, ciphertext, signature, master key, error-detect.

1 Introduction

In this article we will introduce a public key system. This is the first time that the
theory of tame automorphism groups (see section 2) of the affine spaces K"*" is applied to
formulate a public key system. For readers’ convenience, the necessary materials about tame
automorphism groups are compiled in section 2. The theory of automorphism groups is well
studied and difficult. Its short history is outlined in section 3. Section 3 is non-essential to
our discussions, and it can be skipped.

Let m be an element in the tame automorphism group. Although the inverse map 7~
exists mathematically, it is impractical to write down the polynomial expression of 71,
which gives the formula of 7~! for all points in K"*", due to high degrees and the large
number of terms (in our scheme, the number of terms > 10%2, see section 10). Corollary 2
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and Corollary 3 of section 2 point out that at one known point (y},---,y,,), the value
(as a numerical point in K"*7) of the map 7! can be readily computed if the decomposition
m =[] ¢; is given, where ¢;’s are tame automorphisms.

In our public key system, we further employ an ‘embedding map’ & :K" —K"™" as
the restriction of an automorphism map 7. Note that there is no inverse map for an em-
bedding map. To illustrate the feasibility of our system, we give an explicit scheme for
n =64, n+r = 100. Let m1 = ¢apspap1, where ¢;’s are tame automorphisms, with
component expression 7 = (my(x1,--+,%100), ", T100(Z1,"*,Z100)), and T = (my(x1,---,
64,0, -, 0), -+, m100(z1, -, Tea, 0,-+,0)). Let fi(z1, -, 264) = mi(x1, -, 264,0-,0).
Then we have # = (f1,---, fioo) :K® —K!% where the 100 polynomials {fi,---, fioo}
are of degree 2 in 64 variables. The polynomial map @ = (fi, -+, fipo) and the finite
field K will be announced as the public key. Let (z,---,7%,) € K% be a plaintext. Let
yi = fi(z!,---,xfy) for i = 1,---,100. Then the ciphertext is (y},---,%}00) € K. Given a
ciphertext (v, -, y1g0) and the set of maps {¢1, P2, P3, d4}, the plaintext can be recovered
by (2}, -, 2h,,0---,0) = ¢, by "t byt (Wl Yhoo) (see Corollaries 2 & 3, section 2).
The set of maps {¢1, P2, P3, P4} is the private key. It is easy for users to select individual
schemes, and there are plenty of them (see sections 6 and 7). The computations are over the
finite field K, and hence fast. They can also be carried out in a parallel way. The scheme
has the functions of error-detect, master key and signature (see section 9).

The attacker faces a difficult job. Mathematically, there is no known way to recover the
private key {¢1, p2, P3, 4} from the public key 7 and the field K. The inverse of the map
7 can not be found since it does not exist. Due to the selection of ¢; in our scheme (see
section 6), for each individual scheme, the highest homogeneous parts (which are of degree 2)
of polynomials {fi,---, fioo} are all linearly independent (see section 6), hence any linear
combination of { f;} will not produce a polynomial of smaller degree. A search for polynomial
relations among {f;} will involve vector space of dimension 3.2(10'!) which is beyond the
present technology (see section 10). The attacker may try to construct qbl_lqb{ lqbg 1(]5;17? step
by step. The time needed to find ¢;1fr, according to the analysis of Part III of section 10,
is at least 1037 years. The random attack is ineffective (see Part IV of section 10). The
present scheme can withstand known attacks (see section 10).

2 Mathematical background

Let K be a field. Let K™'" be the affine space of dimension n+r over K. Let K[x1, -+, T, 1]
be the polynomial ring of n + r variables, x1,- - -, Zp4r, over K. Let o be a polynomial map,
o : K" — K" The induced map o* : K[z1, -, tpir] = Klz1, -+, Tyyy] defined as

O'*(p(J?l, T a$n+r)) = p(g(xl, T 7$n+1“))

where p(z1,- -+, Zp4r) is any polynomial in K[zy, -, Zy4r]. A map o is said to be an ‘in-
vertible linear transformation’ if o* sends linear polynomials to linear polynomials and is
invertible. For example, translations and rotations are invertible linear transformations.
Definition: We define a tame automorphism ¢; = (¢i1,- -, ¢intr) as either an invertible
linear transformation, or of the following form in any order of variables x,---,zy4, with



polynomials 5; ;,

(1) : dip(z1, - Tngr) = 21+ hit (T2, Tpr) = 91
(2) : dio(z1, Tngr) = T2+ hip(@3, -+, Tngr) = Y2
(7) : ¢i,j($la e Tpgr) = Tj+ hi,j($j+17 e Tpgr) = Yj
(n + T) : ¢z’,n+r($la Tt a$n+r) = Tn+r = Yn+r

The group generated by all tame automorphisms is called the tame automorphism group.
Note that the group product is the composition of maps, i.e., substitution, which is different
from the product of polynomials. The following proposition and its corollaries will be given
without proofs.

Proposition 1 Let a tame automorphism ¢; be defined as in the preceding paragraph. We
have the inverse ¢; ' = ((ﬁi_’ll, e ,(ﬁi_’;_i_,) with Ty = ¢Z~_ﬁ+r(y1, S Yndr) = Yngr and T =
¢i_,j1(y1a o ayn-H") =Y; — hi]’((ﬁi—,jl-pl(yla o ayn-l-?")a s a(ﬁi_,;-l-r(yla o ayn-l-?"))’ fO’I" .7 =n+r—
1,---,1.

For instance, in the case of four variables, we have the inverse polynomial map ¢; Lin the
following abstract general form in term of variables,

b (Y1, ya) =

big (Y1 ya) = ys — hiz(ya)

bia (Y1 ya) = Y2 — hia(ys — his(ya), ya)

bit (W1, ya) = y1 — hat (Y2 — hio(ys — hiz(ya), ya), ys — his(ya), ya)

In general, the total degree of ¢, jl (y1,- -, Yntr) increases very fast and the number of terms
can be quite large as indicated by our later discussions. As shown in section 9, the number
of terms in 77! in our scheme is greater than 10?°*. Therefore it is impractical to actually
write down the polynomials (ﬁi_’jl(yl, -+, Yntr). However, if a point (y7,---,y;.,) is given,
the value of the inverse map can be readily computed in the following special form in term
of numbers.

Corollary 2 Given a set of values (yi,---,Yniy) €K™ and a tame automorphism ¢; as
in the Definition of this section, then the values (z,---,2,,,) = (¢i_,11(y’1,---,y;+r),---,
Gitr(Yls s Ypir)) € K" can be found by induction; first, we have x), ., = ;%_i_,(y’l, s
Yntr) = Ynirs inductively we have &y, -+, 5, € K, then we have z’; = (ﬁi_’jl(y’l, e Ungr) =
Y; = hij(Tiy1, Tpyy) forj=n+r—1,--- 1.

Corollary 3 Given the decomposition m = ;ff ¢i where ¢; are tame automorphisms, then
we have 7' = [[Z) ¢: . Furthermore, if a set of values {y;} is given, then we have

W_l(ylla"'ay;kkr) = H;irlz, ;l(ylla 7y7,'L+T‘)'



3 Theory of automorphisms groups

There is a long history of studying ‘automorphism groups’ for affine spaces K" and ‘embed-
ding theory’ in mathematics. There are thousands of papers on those subjects. The theory
of automorphism groups for K2 was established in [16] which stated that the automorphism
group for K? is the tame automorphism group, i.e, any automorphism of K? can be written
as a canonical product of tame automorphisms. The most famous problem in this area is the
fifty six year old Jacobian Conjecture ([3]) for 2-dimensional space. For embedding theory
([1], [12], [13]), the simplest case, i.e., the (algebraic) embedding of affine line to affine plane
in characteristic 0, had been an open problem for forty years. It was solved in [1] using
difficult arguments. In the case of finite fields, the embedding problem is open for n = 1 and
n 4+ r =2, see [12]. They are beyond the scope of the present article.

There is an abyss between our knowledge of the automorphism group of K? and the
automorphism group of K" for n +r > 3. For n +r > 3, every element 7 in the tame
automorphism group has a factorization m = [[; ¢; by its definition, however, there is no
known way to find it. In [13], Nagata constructed an automorphism o for n+r = 3. One can
not decide whether ¢ is in the tame automorphism group since there is no theorem for the
above factorization (Some unproved conjecture about factorization for n + r = 3 is listed in
[13]. Note that one can show that /2 is not rational since we know the factorization theorem
for integers).

4 Principle or Algorithm

Principle: Let n+r > 3 , m a positive integer and K a field of 2™ elements. Let the user
select k tame automorphism ¢y, -« -, ¢o, p1 of K", Let m = ¢y - - - popr=(m1, -+, Tpir). Let
7 = (m(z1, -+, T, 0,--+,0), s Ty (w1, 0, T, 0--+,0)), and fi(wy, -+, 7)) = mi(z1,---,
Zp,0,---,0) fori=1,--+-,n+r.

The user will announce the map & = (f1, -, fatr): K =»K""" and the field K of 2™

elements as the public key.

Given a plaintext (z,---,2]) € K". The sender evaluates y; = f;(z],---, 2} ). Then the
ciphertext will be (y{,---,y,,,) € K",
The legitimate receiver (i.e., the user) recovers the plaintext by (z},---,2},0,---,0) =

1t b (e, yhyy) (see Corollaries 2 & 3). The private key is the set of maps {¢1,
e Bt

5 Component

To implement the above principle, we use a Component Qg (see below). This component
does not need to vary according to users. It can be made as part of the hardware. The user
will select some other functions (see section 6) to make individual scheme non-traceable. The
component in this section is example by nature, it is selected due to the theoretical clearness.
Similar ones can be constructed.

The following definition will be used in the discussion of Component Qg,



Definition Let ¢, --,qs be polynomials in variables zq,---,z;. Let ¢(x1,---,x;) be a
polynomial. If

Q(q1($1,"' 7$t) 7qs($17"' 7$t)) = g(xlv"' 7$t)

Then Q is called a generating polynomial of ¢ (over qi,---,qs) . Furthermore, if @ is of the
minimal degree among all possible generating polynomials of ¢, then it is called a minimal
generating polynomial of £, and its degree is called the generating degree of £, in symbol
gendeg(€). If there is no such polynomial @), then we define gendeg(¢)= oo.

Now, let us define the Component Qg as follows,

Component Qg: Let the field K be of 2 elements, ¢t = 19 and s = 30. Let

qi(z1,- -, T19) = T1 + T226; @(1, -+, 219) = T3 + 2377
g3(z1, -+, T19) = T3 + T4T10; qa(z1,- -, T19) = T3T5;

qs(z1, -+, w19) = 2370113 q6(x1,- -, T19) = T427;

qr(z1,- -, T19) = T4T5; gs(z1, -+, 219) = 2% 4 T5T11;
qo(z1, -+, T19) = T + TsTy; qo(z1, -+, T19) = 23 + T1013;
qui(z1, -, 219) = 3§ + T14m15;  qu2(z1, -+, T19) = TrT10;
q3(%1, -+, T19) = T10%711; qa(z1, -+, T19) = 33y + T788;
qi5(z1, 0+, T19) = ol + zzis; qie(z1, -0, T19) = Ty + T10T12;
qir(z1, -+ 219) = 35 + sz qis(z, -, 219) = T12216;
qi9(z1, -, 219) = T11T12; q20(z1, -+, T19) = TgT13;
q21(x1, -+, T19) = T7T13; q22(z1, -, T19) = T8T16;
q23(T1, -, 219) = T14T17; q24(T1, -+, T19) = T7T11;
C]25(5L“1, ,$19) = T12715; QQ6($17 ,!L“19) = T10%15;
CI27(361, ,2519) = T12717; qzs(fﬁl, ,3619) = T11%14;
q29(1, ,T19) = T18 + T7; q30(z1, ,T19) = T19 + ﬂU%g;

Then the following Qg is a minimal generating polynomial of z?4 of degree 8 in ¢;,

Qs = ¢} + g3 + BB + @3¢ + @Gt + ddabsllas + (afy + qraqis + qsq19 + 20921
+q22424) (¢34 + qu6q17 + 23028 + q25G26 + q13G27)] + d39 + T30

Proof. (sketch) It is easy to see that Qg is a generating polynomial of ¥, by substitution.
Clearly any generating polynomial R of 22, must involve g3, which produces z}g. Therefore
the polynomial R must involve g3 which produces zf. Its degree will be at least 8. Hence-
forth the above polynomial Qg is a minimal generating polynomial of z2,. n

Remark : The Component Qg will be used to construct a public key scheme in the next
section. The security of the scheme depends partially on the degree of polynomials QQg and
its complexity. In part II of section 9, we will have a detailed discussion. With the degree
8, an attacker is forced to consider a vector space of dimension 3.2(10'!) in our scheme (see
section 10, II). The dimension is too high to be handled by the present technology. The
degree of polynomials (Jg can be increased if necessary. n

For the convenience of discussion in the next section, let us define



Definition An invertible linear transformation ¢; = (¢11,- -+, $1,n4r) is said to be of type
A if
n+r
bri= Y aijz;j+bi

=1
then

(1)For i =1,---,n, we always have b; #0,a;; =0,for j=n+1,---,n+r
and at least half of the remainning a; ; are non-zero.

(2)Fori=n+1,---,n+r, we always have ¢; = z;.

6 Implementation Scheme

Let n = 64, r = 36, n+r = 100. Let the field K be Fom, the finite field of 2 elements, where
m is a positive integer > 8. We will build four tame automorphisms ¢4, ¢3, p2, $1. The maps
¢1, ¢4, provided by the user are invertible linear transformations with minor restrictions (see
(A), (C) below). The non-linear maps ¢9, ¢3 are built essentially with Component Qg of
the last section with minor supplements from the user (see (B) below).

Notations:

Let us use the same notations as in the last section; polynomials ¢y, - - - , g29, the generating
polynomial Qs(q1,---,q29). Let [j] =7 mod 8 and 1 < [j] < 8.

User’s selection:

(A) The user selects ¢1 = (¢1.1,- -, ¢b1,100) to be any invertible linear transformation of
type A (see the last Definition of section 5).
(B) The tame automorphisms ¢o = (P21, -+, P2,100) and ¢z = (¢31, -, P3,100) are
defined according to the following rules (1)* — —(11)*,
(1)* : ¢oi(z1, -+, z100) = 4, for i =1,2
(2)* : poi(z1, -+, x100) = T + Ti1Ti—2, for i =3,---,9.
(3)* : poi(z1, -, x100) = i + mﬁ-fl] + ()T i—5) + T[ip1)Z[ite), for i =10,---,17,
(3)" : poi(x1,+++, T100) = Ti + T[_1)T[ig1) + T[)Tliga), for i =18,---,25,
(3)" : poi(@1,- -+, T100) = Ti + T[_1)Tlig1) + Tlig2)Tligs), for i = 26,---,30,
(4)* : o1,y @100) = i + T7_19, fori=31,---,60
(5)" : pa1(x1, -, T100) = T61 + T,
(5)* & po62(z1, "+, T100) = T2 + Ty,
(5)* & po63(z1, -+, T100) = Tz + T,
(5)" : paga(z1, -+, Z100) = Tea + 513(253,
(6)* : dpoi(w1,- -+, T100) = i + qi—6a(T9, T11," "+, T16,T51," -, Te2), for i=65---,92
(7)" = i1, z100) = @i + Gi—92(%10, T17, "+ *, £20, T15, L165 L51, " - * , £60, £63; L64 ),

fori=93,---,100



(8)* : ¢3,i($17' o 737100) = Ty, fO’)” I = 37 Ty 100
(9)" : ¢p32(z1,- -, x100) = 2 + Qs(To3, -+, T100, T73, -+, T92T63, T64)

(10)* : ¢3,1(5L“1, T ,$100) =x + Q8($657 T ,!1392,$61,IL“62)

(C) The user selects ¢4 to be an invertible linear transformation satisfying condition (11)*
in the following way, where ™ = (7, -+, 7100),

(11)" : m = dugpzpob1, and m;(0,---,0) =0

The field K and polynomials f;(z1, -, z¢s) = mi(x1,- -+, 264,0,---,0) for s = 1,---,100
will be announced as the public key. The private key is the set of maps {1, 2, 3, P4}.

Let (2, -, 2f,) € K5 be the plaintext. The sender evaluates y = fi(x,- -+, z4). Then
the resulting (v}, --,¥}0) € K'°° will be the ciphertext.

The legitimate receiver (i.e., the user) recovers the plaintext by (z},---,zg4,0,--+,0)
=¢ - (Y, Yheo) Which can be done easily according to Corollaries 2 &3. -

Detailed description of ¢

The invertible linear transformations ¢ and ¢4 selected by the user are not complicated.
The tame automorphism ¢y needs further explanation. We will write down a concrete example
for ¢9 as follows,

(1)* = ¢p2i(x1,- -, z100) = x4, fori=1,2

(2)* : poi(x1,- -+, %100) = @ + Ti1Ti—9, fori=3,---,9,
(3)" : p2,10(w1, -+, T100) = T10 + 73 + ToT5 + T3Ts
(3)* : 211(w1, -+, T100) = 211 + 73 + T3T6 + T4T)
(3)* : d212(w1, - -+, T100) = Z12 + 73 + T4T7 + T5T9
(3)* : d2,13(w1, - -+, T100) = Z13 + 73 + T5T8 + T6Ty
(3)* : poa(z1, ++, T100) = T14 + TF + TeT1 + T7T4
(3)* : go5(z1,++, T100) = T15 + TG + T7T2 + T5Ws
(3)* : go6(z1,++, T100) = T16 + TF + T5T3 + T1T6
(3)* : doi7(z1,- -+, T100) = T17 + T§ + T124 + ToT7
(3)" : d2,18(w1, -+, T100) = T18 + T173 + TaTs

(3)* = d2,10(1, - -+, T100) = P19 + T2Ts + T3T7

(3)" : p220(1,- -+, 100) = T20 + T3T5 + T4Tg

(3)" : p221(w1,- -+, T100) = T21 + T4T6 + T5T1

(3)" : do22(w1,- -+, T100) = T2z + T5T7 + TeT2

(3)" : d223(w1,- -+, T100) = T23 + TeTy + T7L3

(3)" : d224(w1,- -+, T100) = Toa + T7T1 + TgTy

(3)" : d2,25(w1,- -+, T100) = @25 + T8T2 + T1T5

(3)* = d226(w1, -+, T100) = W26 + T123 + T4T7



To7 + Toxy4 + T5x8

'7513100)

(3)* : ¢2,27($1, -

Tog + T3x5 + Texq

'7513100)

(3)* : ¢2,28($1, -

Tog + T4xg + T7X2

'7513100)

(3)* : ¢2,29($1, -

T30 + T5X7 + T8x3

' afI;IOO)

(3)" : p230(x1,--

_ 2
©,T100) = T31 + T3y,

(4)" = P31 (1,

_ 2
©,T100) = T32 + T,

(4)" : paz2(x1,--

2
©,T100) = 33 + T3,

(4)" : po33(x1,--

2
©,100) = 34 + Ty,

(4)" = poga(xy,--

2
©,T100) = T35 + T35,

(4)" : po3s(1,--

2
-, T100) = Z36 + Lo,

(4)* : ¢2,36($1, -

2
-, T100) = Z37 + To7,

(4)* : ¢2,37($1, -

2
-, %100) = Z38 + Tog,

(4)* : ¢2,38($1, -

2
-, T100) = Z39 + T,

(4)* : ¢2,39($1, -

2

-, T100) = Z40 + T3,
2

©,Z100) = Ta1 + T3,

(4)* : ¢2,40($1, -

(4)" = a1 (1,

2
L, Z100) = Ta2 + T3y,

(4)" : Ppoa2(x1,--

_ 2
©,Z100) = T43 + T33,

(4)" : Ppoag(xy,--

2
L, Z100) = Taa + T3y,

(4)" : o aa(xy,--

2
©,Z100) = Ta5 + T35,

(4)" = poas(1,--

2
©,Z100) = Ta6 + T34,

(4)" = Ppoas(1,--

9
-, T100) = Z47 + T37,

(4)* : poar(z1,--

2
-, T100) = T4 + T3g,

(4)* : ¢2,48($1, -

2
-, T100) = Z49 + T3,

(4)* : ¢2,49($1, -

2
-, %100) = Zs0 + T4,

(4)* : ¢2,50($1, -

2
-, %100) = Ts1 + Tip,

(4)* : ¢2,51($1, -

2
©,T100) = T52 + Tio,

(4)" : pas2(x1,--

2
©,T100) = T53 + T3,

(4)" : o s3(x1,--

2
L T100) = T54 + Ty,

(4)" = posalzy,--

2
©,T100) = T55 + T5,

(4)" : pass(r,--

2
“,T100) = T56 + Tig,

(4)" = pas6(z1,--

2
-, %100) = Ts7 + Ti7,

(4)* : ¢2,57($1, -

2
-, %100) = Ts8 + Tig,

(4)* : ¢2,58($1, -

2
-, %100) = Zs9 + Tig,

(4)* : ¢2,59($1, -

2

-, %100) = Z6o + Tx,
2

-, %100) = Ze1 + L,

(4)* : ¢2,60($1, -

(5)* : ¢2,61($1, -

2
-, %100) = Z62 + Tg1,

(5)* : ¢2,62($1, -



L dog3(T1, -, T100) = Tes + Ty,
L doea(21, T100) = Tea + Tgs,

: ¢2,65($1,"'7$100) = T65 +Q1(!L“9751311,"'

= Ze5 + T9 + T11T15,

t ¢266(1, -+, T100) = Te6 + G2(T9, T11, -

2
= Tep + T11 + T12%186,

: ¢2,67(5E1, o, x100) = Te7 + q3(T9, T11, -

2
= Ze7 + T1o + T13%53,

t ¢268(1, -+, T100) = Tes + qa(T9, T11,- -

= X8 + T12T14,

: ¢2,69($1, T 7113100) = Xg9 + Q5(=’L“9,=’1311, T

= X9 + T12T54,

: ¢2,70($1, T 7113100) =x70 + QB(!E9,=’E11, T

= X7 + T13T16,

271 (1,000, T100) = 71+ qr(T9, T11, 0+

= 271 + T13T14,

s po,72(w1, 00+, T100) = 72 + qs(T9, T11, -+

2
= T + Tig + T14%54,

: ¢2,73(5E1, o, x100) = 273 + qo(T9, T11, - -

2
=273 + T15 + T51T52,

s 24z, Tr00) = T4 + quo(ze, 211, - - -

2
= x74 + T51 + T55%s56,

: ¢2,75($1, T ,33100) =x7+ Q11($9,$11a T

2
= x75 + T59 + T57%58,

: ¢2,76($1, T ,33100) =x7 + Q12($9,$11a T

= Z76 + T16T53,

o771, -+ z100) = w77 + q13(29, 711, 0 -

= X717 + T53T54,

s p278(1, -+ T100) = w78 + qra(zo, 711, -

2
=278 + T55 + T16%51,

: ¢2,79($1, T ,33100) =x79 + Q15($9,$11a T

2
= X719 + T55 + T54%59,

: ¢2,80($1, T ,33100) =xg + Q16($9,$11a T

2
= xg0 + T57 + T53%55,

: ¢2,81($1, T ,33100) =xg1 + Q17($9,$11a T

2
= xg1 + T53 + T54%60,

y L16y L51y " *

yL165 L51, " *

yL165 L51, " *

yL165 L51, " *

yL16,L51, " °

yL16,L51, " °

y L165 L51, " *

y L165 L51, " *

y L165 L51, " *

yL16,L51, " °

yL16,L51, " °

yL16,L51, " °

y L16, L51, " *

y L16, L51, " *

y L165 L51, " *

y L165 L51, " *

y L165 L51, " *

'a$607$617$62)

» L605 L61 x62)

» L605 L61 (I;62)

» L605 L61 (I;62)

» L60, L61, !1362)

» L60, L61, !1362)

» L605 L61 (I;62)

» L605 L61 (I;62)

y L605 L61 (I;62)

» 60, L61, !1362)

» L60, L61, 3362)

» L60, L61, 3362)

* 5260, L61, (I;62)

* 5260, 61, (I;62)

* 5 L6005 L61, 3362)

* 5 L60,L61, 3362)

* 5 L60, L61, 3362)



page(T1, -, T100) = 82 + q18(T9, 11, -, T16, T51, " 5 T60, T61, T62)

= xg2 + T55T59,

tpag3(T1, -, T100) = 283 + q19(T9, T11, -, T16, T51, " 5 T60, T61, T62)
= T'83 + T54T55,

: ¢2,84($1, te ,36100) = g4 + QQo(fﬁg,fEn, oy L16, Tl vt ,5E60,5E61,3€62)
= g2 + T51Z56,

D pags (w1, T100) = @85 + q21 (X9, 11,5 T16, T51, " 5 T60> L61, T62)
= T85 1+ T16T56,

D page (w1, T100) = 86 + q22(T9, 11,5 T16, T51, " 5 T60> L61, T62)

= xg6 + T51T59,
Sogr(x1, 5 T100) = T87 + q23(Z9, T11, -+, T16, T51, 5 T605 T61, T62)

= xg7 + T57Te0,

t pags(T1, -, T100) = T8s + q24(T9, T11, -, T16, T51, " 5 T60, T61, T62)
= T'88 + T15T54,

: ¢2,89($1, te ,96100) = Tg9 + QQ5(5E9,5E11, oy T16, Tl vt ,5E60,5E61,3€62)
= T'89 + T55T58,

: ¢2,90($1, te ,96100) = Tg9o + QQG(ZEQ,ZEH, oy T16, Tl vt ,5E60,5E61,3€62)
= T90 + 53758,

: ¢2,91($1, te ,30100) =91 + QQ7(5E9,5E11, oy T16, Tl vt ,5E60,5E61,3€62)
= T91 + T55T60,

D p292(21, 0+, T100) = To2 + qos(T9, T11, -, Ti6, T51, " 75 T60, T61, T62)

= X9z + T54T57,
t2,93(x1, 0, T100) = T93 + q1(T10, T17, 7 20, T15, T165 T51, 5 T60, 635 T64)

= x93 + T10 + T17%15,

p2,94(T1, 0+, T100) = Tosa + q2(T10, T17, -, T20, T15, T16, T51, "+ 5 60, L63, T64)
= Tgq + 36%7 + Z18Z 16,

: ¢2,95(«’E1, s ,96100) = Zg5 + Q3(9€10,5E17, Cr 220,215, 16, L5150 ,3660,0663,9664)
= T95 + 96%8 + Z19%53,

t ¢2.96(1, -+, T100) = To6 + q4(T10, 717, +, T20, T15, T165 T51, * * * 60, L63, L64)
= T96 + T18720,

o97(T1, 0+, T100) = To7 + q5(Z10, T17, -+, T20, T15, T16, T51, "+ 5 T60, L63, T64)

= T97 + T18T54,
t 2,98(T1, 0+, T100) = Tos + q6(T10, T17, "+, T20, T15, T16, T51, "~ 5 T60, L63, T64)
= T9g + T19%16,
t299(z1, 0, T100) = Tog + q7(T10,T17, -, T20, T15, T16, T51, "+ 5 T60, L63, T64)

= Z99 + T19T20,
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(7)* : ¢2,100(IE1, T ,!13100) = Z100 + C]8($10751317, Ty 20, L15,L16, L5177 75360,376371'64)

2
= Z100 + X1 + T20T54,

Detailed description of ¢3¢o

Let («),---,xg) be the plaintext. The machine will read it as («],---,zgy, 0,---,0) with
thirty six extra zeroes. Applying ¢1, we have (2],---, 24, 0,--+,0). Then applying ¢ to the
previous results, we have (u},---,u}y,), where

(1) s =4,

@) b =24,

(6)" : ugs = 29 + 21,216,
(6)** : ugg = 21,° + 215216,

Further applying ¢3 to the above results, we have (v],---,v}y,), where

ngu;, for +=100,99,,---,3
Ué = UIZ + QS(UIQ37 T 7u,1007u,73v Tt ,u’92,u%3,ul64)
= 25 + (24)°
Q)Il = ’Uzll + QS(U%5a o aug)2au161au162)
= 21 + (2)°

The net effect of ¢3¢po is that the point (2], -, 264, 0,---,0) is sent to a point (v],---,v]y)
with all v} as quadratic polynomials of 2], -+, z54. Moreover, if we treat zi,---, 2, as vari-
ables, then the parts of degree 2 of v} as polynomialsin 2], - - -, z, are all linearly independent.
Note that all v)’s are square-free in the sense that none of them is a square of a linear poly-
nomial. The above facts can be verified by direct checking. Taking the invertible linear
transformations ¢1, ¢4 into consideration, it is easy to see that all the polynomials f; are
polynomials of degree 2, with degree 2 homogeneous parts generating a vector space of di-
mension 100. Furthermore, it can be shown that all elements except zero in the vector space
generated by the set {f1,---, fioo} are square-free.

7 Plaintexts, Users and Compactness

Let us count the possible number of plaintexts. Since the number of plaintexts is the
number of choices for 2}, - -, x%,, we see that there are 264 such plaintexts. To have a rich
scheme and to prevent attackers from forming tables of plaintext-ciphertext, and to avoid the
usage of the following identities over the finite field Fom to cut down the degrees,

m

2
z; —x;=0

it is suggested to use m > 8 as stated in our scheme.

11



Of equal importance to having a large number of possible plaintexts is having lots of
possible users. In order to allow for many such users, we first get an expression for this
number in terms of m and 64. This amounts to counting the number of automorphisms =
of the form 7 = ¢1pad3ps. Assuming that a negligible proportion of these automorphisms
7 have more than one representation m = ¢1ed3ds = P Phdhdly, the number of users is
asymptotic to (choices for ¢4) x (choices for ¢3) x (choices for ¢2) x (choices for ¢1). The
condition of type A for ¢; is not a big restriction. We may use the possible numbers for
the invertible linear transformations as an estimation for ¢1,¢4. The number of invertible
linear transformations ¢; is ?:_(}(2’"” —omi) = gmn(n—1)/2 H?:1(2mj —1). For our selection
of n = 64,n +r = 100, it is easy to see that the number for ¢; > 22628 A similar count of
terms of ¢4 results in the total possible number of users > 27678

Now let us look at the compactness of the scheme. Note that Component Q4 are fixed for
all users. To have an individual scheme, the user needs to select ¢, ¢4 which can be generated
by certain computer programs. The end results are 100 quadratic polynomials (f1,- -, f100)
in 64 variables x1,---,xg4. It is easy to see that the number of terms of polynomials of
degree 2 is (67)(64)/2! and we have 100 polynomials, therefore the total number of terms is
214,400 (for another aoftware implementation TTM 2.3, the number is 61,920). We believe
that the number can be further reduced. The expense to the sender is mainly in evaluating
polynomials y; = fi(z],---,z%,). Note that the computations are carried over the finite field
K, hence fast. They can also be computed in a parallel way. Thus the process can be sped
up several hundred fold. On the receiver’s side, the total number of terms for ¢1, ¢o, P3, Py
is 17,000. The legitimate receiver needs to evaluate ¢7 " ¢5 'bz g ' (¥), -+, ¥i0o) (according
to Corollaries 2 & 3) which is not expensive.

The number of terms will be reduced, and the efficiency will be improved, as the technique
is improving, and new Components Q4 are being discovered.

8 Technique Report

Following the principle of this article, there are several software implementations. For the
convenience of discussions, the method will be called ”tame transformation method” (TTM).
There are versions TTM 1.9 (of this article), TTM 2.1, TTM 2.3, TTM 2.5 available. They use
C Language. For m=8, the rates of expansion of data are 1.4, 1.56, 1.63 and 1.5 respectively.
They have been used on various machines listed below,

200M hzPower PC604ew/1024K cache.
225 M hzPower PC603ew /256 K cache,
167MhzUltrasparcw/512K cache.
167MhzPentiumw /512K cache.

Their encrypting speeds on 200 Mhz PowerPC 604e (w/1024K cache: virtual memory
off) are listed in the following

The decrypting speed is in general 10 to 20 times faster than the encrypting speed. The PC
software T'TM 2.5 is faster than a possible hardware implementation for RSA 1024. According

12



speeds of software implementations
TTM 1.9, 94,939b /s
TTM 2.1, || 106.224b/s.
TTM 2.3, || 207,000b/s
TTM 2.5, || 300,000b/s.

Table 1:

to the opinion of certain expert, a couple added instruction about finite field multiplication
in the chip architecture would increase the speed of software implementations at least 10-16
times. If it is done, then our software implementations would reach a few million bits per
second for the PC and match the speed of the software for secret-key encryptions (DES etc.).
A software in assembly language should be faster.

The newly announced ”Motorola’s high-performance vector parallel processing expansion
to the PowerPC architecture” (http://www.mot.com/SPS/PowerPC/AltiVec/) will increase
the speed of our algorithm conservatively by a factor of five; perhaps by 10, depending on
what kind of memory subsystem it’s attached to. Although this doesn’t have *exactly* the
instructions we need, this will make the speeds of our softwares several million bits per second.
It will be a while before this technology will be available, but it is *very* exciting.

It is possible to encrypt voice communications(64,000 bits/sec) and video phone (1,250,000
bits/sec for Motorola’s new chip) by those softwares on an ordinary PC. Note that in com-
parison, RSA toolkit BSAFE 3.0 for 1024 is 7 Kb/s. It is conceivable that a hardware
implementation, using finite field multiplication and parallel computing, would approximate
the speed of the fastest hardware implementation of the triple DES 128.

9 Useful Properties of the Scheme

Error-Detect Function

Upon receiving the ciphertext (y],---,4}09), the user applies Corollaries 2 & 3 to eval-
uate ¢7 g ' p3 by (Y, -, Ylgo) to decode it and get (Z1,---,%100). If one of Zyz,- -, F100
is not zero, then there must be an error.

Master Key Function

Select a group of indices, S, from {94,---,100} as in our scheme (in general, a few extra
indices 101, 102, - - - may be added). Select ¢4 such that the corresponding subspace generated
by z; with ¢ € S and the subspace generated by z; with j ¢ S are both invariant. The original
public key scheme gives a master key. A subordinate key can be produced by deleting all f;’s
with ¢ € S.

A different way to produce a master key is to find a polynomial Q' (hy,- -, hig, -, h16+s),
such that both @' and its specialization Q'(hi,---,h1s,0,---,0) can be used to construct a
public key scheme. We require that ¢; to keep space {(c1,--,¢100,0,--+,0) : ¢; € K}
=K' x 0 x --- x 0 invariant and use the specialization z; — 0 for i = 101,---,100 + s to
create a subordinate key from the original key (i.e., the master key).
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The ‘master key-subordinate key’ relation can be broken by alternating any one of the
linear transformations ¢1, ¢4 involved.
Signatures

The map 7 is not an onto map. However, we may restrict the map to a suitable subspace.
Let V = {(dy,---,d;,0,---,0) : d; € K} CK® where j is a fixed integer less than or equal
to 62. Let V = ¢f1(V). We will require that ¢4 induces a linear transformation on W =
{(e1,--+,€j,0,---,0) : e; € K} CK!%. Let 7 : (01,"',Cj,'_",0100) = (c1,-++,¢j) be a
projection. Clearly 77 is an one to one and onto map from V to the j-dimensional affine
space. Moreover, the map is tame, and its inverse at a point (v}, - ,y}) can be found. The

inverse at (yi,---,y;) forms a signature.

10 Cryptanalysis for the Scheme

I. Direct Methods

There is no known way to recover the private key {¢4,- -, ¢1} from the public key 7 and
the field K. There are three other direct ways to attack the scheme: (1) use ‘inverse formula’
for power series to find polynomial expressions of 7=! ([9]). Note that only # is given, since
#~! does not exist theoretically, there is no way to find it, (2) let 2; be a polynomial, g;, of {y;}
with indeterminate coefficients for all i. Do enough experiments using {z;} to determine {y;}
and then solve the system of linear equations in indeterminate coefficients to find polynomials
gi, or (3) using ‘resultant’ to the expression y; = f;(z], -+, zf,) to eliminate all z; except
one, say :ch, and recover the expressions of :Jc; in terms of 7, -, Y]0o-

For the method (1), note that the form of the map 7 is not given to the public, the
attacker has to guess 7 correctly. Furthermore, it follows from Corollary 2 and the explicit
expression of ¢o in the scheme that we have,

maz{degy, ¢y (Y1, -, yi00)} > 2°

Since ¢1, ¢4 are linear transformations, the theoretic total number of terms in 77! is

100(TT12% (28 4 4))/100! > 10°2. It is too large to be practical. To use the method (2), the
attacker has to give an estimation of the degrees of g;. According to our previous analysis,
there are too many terms in g;’s for the method to be useful. As for the method (3), the
resultant is only practical for polynomials of very few variables, it is impractical in our scheme.

At this moment, the above three direct methods are ineffective. The only possible way of
attacking is to recover ¢;’s or their equivalent forms.

II. Search for Polynomial Relations

Although polynomials {f1,---, fipo} are linearly independent, the attacker may search
for polynomial relations, which are linear relations of monomials, among them. Knowing the
recipe of the construction of the public key scheme, the attacker may launch a ‘step by step
search’ to search for useful polynomials in the ring K[f1, -, fi00] as follows. The attacker
considers all monomials [] f/"* with degrees Y n; less than or equal to some fixed number
d (i.e., >-n; < d). Then the attacker shall find some relation among those monomials to
produce a power of a linear polynomial £*(x1,---,264) = r(f1,- -, f100). Note that the linear
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polynomial £ may be included in a set of variables, say {/,z2,---,xs4}. Let f; take the value
y; for all ¢, then the value of the linear polynomial £ can be computed, which is a s-th root
of r(yl, -+, ¥100)- Once the value of the linear polynomial ¢ is substituted in f; which is
expressed in the new set of variables {/,z2,---, g4}, the total number of variables will be
reduced from 64 to 63. The attacker would achieve a reduction in this way. However, in our
scheme, one can show that, with elementary analysis and tedious computations, the attacker
has to consider the vector space of all polynomials of degree 8 in fy,- -+, fip0- The dimension
of homogeneous polynomials of degree 8 is C4%" ~ 3.2(10'!). The dimension is too high to be
handled by present technology. We can select polynomials Qg with higher degrees to defend
the scheme if necessary.

III. Identify the Highest Homogeneous Parts
The attacker may try to find qbffr first. Let us introduce a new number, dif fdim. Let
h; be a polynomial of (z1,---,x;) with the homogeneous part ¢; of the highest degree. Let

dq; .
:9=1,---,t}). Not
8.’,5] ] ) ’}) ote

us define the diffdim (h;)=dim (the vector space generated by {

that diffdim h;= 0,2,4 in ¢9, ¢3.

Let V = { the 100 dimensional vector space generated by f;}. The attacker shall try to
pick up the i-th component, ((ﬁ[lfr)i, of the polynomial map ¢Zlfr from the vector space V.
Let us study the highest homogeneous parts of elements in V.

Let the highest homogeneous part of f; be r;. Let U = {the vector space generated by
r;}. Let g;=the highest homogeneous part of (¢ '#);. It is easy to see that for some k,
dif fdim(qr) = 4. The attacker wants to find suitable numbers (z1,- - -, z100) such that

100
w=3zni =g
=1

Let us consider a way to find the above w. A necessary condition is that all partial
derivatives, w;, of w with respect to x; span a vector space of dimension 4. Let r;; = Y~ a7
be the partial derivative of r; with respect to z;.

The attacker attempts to list all elements in U with dif fdim 4. The attacker may use
the above information as follows.

For a fixed 4, let A; be the 64 x 64 coeflicient matrix (a;j;), and A = 100 2 A;. Let
us assume that A is of rank 4 with coefficient linear homogeneous polynomials in variables
z1,-++,2100- It produces 100 homogeneous equations in 100 variables of degree 5. It fol-
lows from pg 75 of [8] that the upper bound of time required to solve the equations is
O(m?(100)25590) ~ m?10%37. (For the discussion of difdim(h;) = 2, the same arguments
give O(m?(100)23°00))

Note that there are 3(107) seconds in a year. Let us use a futuristic computer which
operates 102 shift operations per second. It will take up to m?103!7 years to list all elements
in U with dif fdim 4. Then the attacker can list all elements in V' with di f fdim 4. Similarly,
the attacker can list all elements in V' with dif fdim 0, 2.

Only after the above elements of V" are listed, can the attacker consider the task of picking
up (non-homogeneous) polynomials (¢, '7);, and thus undo the effect of ¢,.
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IV. Brute Force Attack

The attacker may use linearly independent linear polynomials {vi,---,ves} to express
{f1,-++, fioo}- Then the attacker assign random values from the field K for a subsets of
{v1,---,v6a} to see if the assigned values are correct. It is easy to see that the said subset

should have at least 15 elements to have a chance of testing to find out if the assigned values
are correct. Assuming it only take one clock cycle to test if a set of 15 random numbers
is correct, the attacker still need 3 x 10?2 misp (one million instruction per second) years to
crack the scheme. In comparison, it requires 3 x 10%° mips years to cracked RSA 2048.

11 Summary

The present implementation scheme can withstand all known attacks. By its nature, the
algorithm is less cumbersome to use than methods that are number theory based. Further-
more, it has the novel functions of error-detect and master key. We wish that this algorithm
will provide a new direction of research.

APPENDIX
Acknowledgement

We wish to express our thanks to J. M. Acken, A. Odlyzko, H. Lenstra, P. Montgomery,
E. Croot, C. Bajaj, S. Wagstaff, F. Chao, R. Osawa, P. Huang for discussions.

After we sent out our original draft in 1995, P. Montgomery responded in showing us a
successive attack on the example of four variables in that draft. We produced another version
which defended against the ‘analysis of the highest homogeneous parts’ to stand the attack
proposed by P. Montgomery. Then A. Sathaye launched a ‘step by step search’, i.e., searching
for relations among all monomials of {f;} with some fixed degree, which could theoretically
crack our second version. Only then did we understand that the attack of P. Montgomery was
the beginning of a ‘step by step search’. The point is that the final polynomials (f1,- -, fnir)
are of various degrees, and they can be grouped and analyzed according to their degrees. In
our previous versions, for a particular degree, there are only a few polynomials (or it is
the same to say, a small dimensional vector space). Those polynomials can be discovered
by a ‘step by step search’ even though they were covered up at the beginning by a linear
transformation of the vector space generated by {f;}. Therefore, the previous public key
system would dissolve step by step theoretically.

Due to our intention of including a ‘master key function’ (see section 8) in the system,
we had considered a specialization x,y, — z;. Independently, from the point of view of
embedding theory (cf [1], [12]), A. Sathaye suggested that we should consider z,y, — 0.
These two approaches were identical up to a linear transformation. Very soon we solved the
technical problem involved (see section 5). In our present public key scheme, the resulting
polynomials are of degree two uniformly and their degree two homogeneous parts are linearly
independent (see the end of section 6).

Applying ‘step by step search’ to the present public key scheme, an attacker will have to
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consider vector spaces of dimensions 3.2(10'! see section 10, IT). The dimension is too high to
be handled by the present technology. Moreover, since the encoding scheme uses ‘embedding
maps’ without inverses, it is impossible to crack this scheme by looking for inverses. The
present scheme can withstand known attacks. We are especially grateful to A. Sathaye for
the enlightening discussions and for checking our computations in section 5.
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