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Abstract. In 1985 Fell and Diffie proposed constructing trapdoor func-
tions with multivariate equations [11]. They used several sequentially
solved stages. Another idea of building triangular systems we call T has
been initiated by Shamir. In the present paper, we study a more general
family of TPM (for ”Triangle Plus Minus”) schemes: a triangular con-
struction mixed with some u random polynomials and with some r of
the beginning equations removed.
We go beyond all previous attacks proposed on such cryptosystems using
a low degree component of the inverse function. The cryptanalysis of
TPM is reduced to a simple linear algebra problem called MinRank(r):
Find a linear combination of given matrices that has a small rank r.
We introduce a new attack for MinRank called ‘Kernel Attack’ that
works for qr small. We explain that TPM schemes can be used in en-
cryption only if qr is small and therefore they are not secure.
As an application, we showed that the TTM cryptosystem proposed by
T.T. Moh at CrypTec’99 [15, 16] reduces to MinRank(2). Thus, though
the cleartext size is 512 bits, we break it in O(252). The particular TTM
of [15, 16] can be broken in O(228) due additional weaknesses, and we
needed only few minutes to solve the challenge TTM 2.1. from the web
site of the TTM selling company, US Data Security.
We also studied TPM in signature, possible only if qu small. It is equally
insecure: the ‘Degeneracy Attack’ we introduce runs in qu·polynomial.

1 Introduction

The current research effort in practical public key cryptography introduced by
Rivest, Shamir and Adleman, with univariate polynomials over ZZN , is following
two paths. The first is considering more complex groups, e.g. elliptic curves. The
second is considering multivariate equations. Though many proposed schemes
are being broken, some remain unbroken even for the simplest groups like ZZ2.

One of the paradigms for constructing multivariate trapdoor cryptosystems
is the triangular construction, proposed initially in an iterated form by Fell and
Diffie (1985). It uses equations that involve 1, 2, . . . , n variables and are solved
sequentially. The special form of the equations is hidden by two linear transfor-
mations on inputs (variables) and outputs (equations). We call T this triangular



construction. Let TPM (T Plus-Minus) be T with added final u random (full-
size) quadratic polynomials, and with r of the beginning equations removed.

The cryptosystem TTM, proposed by T.T. Moh at CrypTec’99 is in spite
of an apparent complexity, shown in 2.4 to be a subcase of TPM. The initially
proposed scheme is very weak due to linear dependencies and in section 4.2,
we present the solution (plaintext) to the TTM 2.1 challenge proposed by the
company US Data Security, which is currently selling implementations of TTM.
After this, we focus on breaking more general TPM schemes.

The general strategy to recover the secret key of TPM/TTM systems is pre-
sented in 3. It requires finding a linear combination of public equations that de-
pends only of a subspace of variables. This gives a simple linear algebra problem
called MinRank: Let us consider some n × n matrices over GF(q): M1, . . . ,Mt.
We need to find a linear combination M of the Mi that has a small rank r < n.
The name of MinRank has apparently been used first in the paper [19] that shows
that MinRank is NP-complete. However the MinRank instances in TPM/TTM
use very small r, e.g. the T.T. Moh’s proposal from [16] gives r = 2. We note
that the powerful idea of using a small rank goes back to the cryptanalysis of
Shamir birational scheme [20] by Coppersmith, Stern and Vaudenay [6, 7], and
appears also in the Shamir-Kipnis attack on HFE [14] proposed by Patarin [17].

In 2.2 we explain how to use the TPM schemes in encryption which is possible
only if qr is small. However, in the section 5 we present an attack that works
precisely when qr is small, based on the small co-dimension of the kernel of
the unknown matrix M . This ‘Kernel attack’ breaks in approximately 252 a
cryptosystem with 512 bit cleartexts.

Similarly in 2.2 we explain how to use the TPM schemes in signature; pos-
sible only with qu not too big. Then in section 6 we introduce the ‘Degeneracy
attack’ on TPM based on iterative searching of degenerate polynomials. It works
precisely when qu is small and the signature proposals of [15, 16] are insecure.

2 The TPM Family of Cryptosystems

2.1 General Description of TPM

In the present section, we describe the general family TPM(n, u, r,K), with:

– n, u, r integers such that r ≤ n. We also systematically put m = n + u− r.

– K = GF(q) a finite field.



We first consider a function Ψ : Kn 7→ Kn+u−r such that (y1, . . . , yn+u−r) =
Ψ(x1, . . . , xn) is defined by the following system of equations:

y1 = x1+ g1( xn−r+1, . . . , xn)
y2 = x2+ g2(x1; xn−r+1, . . . , xn)
y3 = x3+ g3(x1, x2; xn−r+1, . . . , xn)
...

yn−r = xn−r+ gn−r(x1, . . . , xn−r−1 ; xn−r+1, . . . , xn)
yn−r+1 = gn−r+1(x1, . . . , xn)

...
yn−r+u = gn−r+u(x1, . . . , xn)

with each gi (1 ≤ i ≤ n + u− r) being a randomly chosen quadratic polynomial.

The Public Key
The user selects a random invertible affine transformation s : Kn 7→ Kn, and a

random invertible affine transformation t : Kn+u−r 7→ Kn+u−r. Let F = t◦Ψ ◦s.
By construction, if we denote (y′1, . . . , y

′
n+u−r) = F (x′1, . . . , x

′
n), we obtain an

explicit set {P1, . . . , Pn+u−r} of (n+u−r) quadratic polynomials in n variables,
such that: 

y′1 = P1(x′1, . . . , x
′
n)

...
y′n+u−r = Pn+u−r(x′1, . . . , x

′
n)

This set of (n + u − r) quadratic polynomials constitute the public key of
this TPM(n, u, r,K) cryptosystem. Its size is 1

8 (n + u− r)(n + 1)(n
2 + 1) log2(q)

bytes.

2.2 Encryption Protocol (when u ≥ r)

Encrypting a message
Given a plaintext (x′1, . . . , x

′
n) ∈ Kn, the sender computes y′i = Pi(x′1, . . . , x

′
n)

for 1 ≤ i ≤ n + u − r – thanks to the public key – and sends the ciphertext
(y′1, . . . , y

′
n+u−r) ∈ Kn+u−r.

Decrypting a message
Given a ciphertext (y′1, . . . , y

′
n+u−r) ∈ Kn+u−r, the legitimate receiver recovers

the plaintext by the following method.

– Compute (y1, . . . , yn+u−r) = t−1(y′1, . . . , y
′
n+u−r) ;

– Make an exhaustive search on the r-tuple (xn−r+1, . . . , xn) ∈ Kr, until the
n-tuple (x1, . . . , xn) obtained by xi = yi − gi(x1, . . . , xi−1;xn−r+1, . . . , xn)
(for 1 ≤ i ≤ n− r) satisfies the u following equations gi(x1, . . . , xn) = yi (for
n− r + 1 ≤ i ≤ n− r + u).

– For the obtained (x1, . . . , xn) n-tuple, get (x′1, . . . , x
′
n) = s−1(x1, . . . , xn).
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Fig. 1. General view of the TPM scheme – The two classes of attacksThis decryption algorithm thus has a complexity essentially O(qr). As a result,
a TPM(n, u, r,K) cryptosystem can be practically used in encryption mode only
under the assumption that qr is ”small enough”.

The condition u ≥ r insures that the probability of obtaining a collision
is negligible, and thus that the ciphering function F can be considered as an
injection from Kn into Kn+u−r.

When r = u = 0, this kind of scheme has been considered and attacked
by Fell and Diffie in [11] (in an iterated form) and by Patarin and Goubin in
[18]. All these attacks explore the fact that the inverse function if of low degree
in some variables, whereas the present paper cryptanalyses much more general
cases with r 6= 0 and u 6= 0.

2.3 Signature Protocol (when u ≤ r)

Signing a message
Given a message M , we suppose that (y′1, . . . , y

′
n+u−r) = h(M) ∈ Kn+u−r, with

h being a (collision-free) hash function. To sign the message M , the legitimate
user:

– computes (y1, . . . , yn+u−r) = t−1(y′1, . . . , y
′
n+u−r) ;

– chooses random r-tuples (xn−r+1, . . . , xn), until the n-tuple (x1, . . . , xn) ob-
tained by xi = yi− gi(x1, . . . , xi−1;xn−r+1, . . . , xn) (for 1 ≤ i ≤ n− r) satis-
fies the u following equations gi(x1, . . . , xn) = yi (for n−r+1 ≤ i ≤ n−r+u).



– for the obtained (x1, . . . , xn) n-tuple, gets (x′1, . . . , x
′
n) = s−1(x1, . . . , xn).

This signature algorithm thus has a complexity essentially O(qu). As a result,
a TPM(n, u, r,K) cryptosystem can be practically used in signature mode only
under the assumption that qu is ”small enough”.

The condition u ≤ r insures that the probability of finding no solution for
(x1, . . . , xn) for the equation Ψ(x1, . . . , xn) = (y1, . . . , yn+u−r) is negligible, and
thus that the ciphering function F can be viewed as an surjection from Kn onto
Kn+u−r.

We will describe in section 6 a general attack on this signature scheme, that is
also applicable when u is non-zero, with qu not too large. Therefore the signature
proposed by T.T. Moh in [15, 16] is insecure.

2.4 The TTM encryption system

In the present section, we recall the original description of the TTM cryptosys-
tem, given by T.T. Moh in [15, 16]. This definition of TTM is based on the
concept of tame automorphisms. As we will see, TTM is a particular case of our
general family TPM: it belongs to the family TPM(64, 38, 2,GF(256)).

General Principle
Let K be a finite field (which will be supposed ”small” in real applications). We

first consider two bijections Φ2 and Φ3 from Kn+v to Kn+v, with (z1, . . . , zn+v) =
Φ2(x1, . . . , xn+v) and (y1, . . . , yn+v) = Φ3(z1, . . . , zn+v) defined by the two fol-
lowing systems of equations :

Φ2 :



z1 = x1

z2 = x2 + f2(x1)
z3 = x3 + f3(x1, x2)

...
zn = xn + fn(x1, . . . , xn−1)
zn+1 = xn+1 + fn+1(x1, . . . , xn)

...
zn+v = xn+v + fn+v(x1, . . . , xn+v−1)

Φ3 :


y1 = z1 + P (zn+1, . . . , zn+v)
y2 = z2 + Q(zn+1, . . . , zn+v)
y3 = z3

...
yn+v = zn+v

with f2, . . . , fn+v quadratic forms over K, and P , Q two polynomials of degree
eight over K.

Φ2 and Φ3 are both ”tame automorphisms” (see [15, 16] for a definition) and
thus are one-to-one transformations. As a result, (x1, . . . , xn+v) 7→ (y1, . . . , yn+v)
= Φ3 ◦Φ2(x1, . . . , xn+v) is also one-to-one and can be described by the following



system of equations :

y1 = x1 + P
(
xn+1 + fn+1(x1, . . . , xn), . . . , xn+v + fn+v(x1, . . . , xn+v−1)

)
y2 = x2 + f2(x1) + Q

(
xn+1 + fn+1(x1, .., xn), .., xn+v + fn+v(x1, .., xn+v−1)

)
y3 = x3 + f3(x1, x2)

...
yn = xn + fn(x1, . . . , xn−1)
yn+1 = xn+1 + fn+1(x1, . . . , xn)

...
yn+v = xn+v + fn+v(x1, . . . , xn+v−1)

T.T. Moh found a clever way of choosing P , Q and fi such that y1 and y2 both
become quadratic functions of x1, . . . , xn when we set xn+1 = . . . = xn+v = 0.

Actual Parameters
This paragraph is given in the appendix. T.T. Moh chooses n = 64, v = 36 and

K = GF(256). As a result, TTM belongs to TPM(64, 38, 2,GF(256)). Applying
the formula of section 2.1, the size of the public keys is 214.5 Ko.

3 General strategy of TPM attacks

In the present section, we describe a general strategy to attack a cryptosystem
of the TPM Family when r is ”small”. It will amount to solving the MinRank
problem. As a result TTM, that is a TPM(64, 38, 2,GF(256)) will be broken.

3.1 The MinRank Problem

Let r be an integer and K a field. We denote by MinRank(r) the following
problem: given a set {M1, . . . ,Mm} of n×n matrices whose coefficients lie in K,

find at least one m-tuple (λ1, . . . , λm) ∈ Km such that Rank
( m∑

i=1

λiMi

)
≤ r.

The (even more) general MinRank problem has been first defined and studied
by Shallit, Frandsen and Buss in [19]. It generalizes the ”Rank Distance Coding”
problem by Gabidulin [12], studied also in [3, 22]), which itself generalizes the
”Minimal Weight” problem of error correcting codes (see [1, 21, 2, 13]). In the
Shamir-Kipnis attack on the Patarin’s HFE cryptosystem [14, 17], the authors
used an instance of MinRank(r) with r = dlogq ne+1 and therefore their attack
is not polynomial. In the present paper r is a small constant, e.g. 2. We note
that the idea of finding small ranks has first been used by Coppersmith, Stern
and Vaudenay in [6, 7] for breaking Shamir’s birational scheme [20].

Recently Courtois proposed a new zero-knowledge scheme based on Min-
Rank [10, 9]. Though in the present paper only two algorithms for MinRank are
introduced, another two can be found in [9].



3.2 Complexity of MinRank

The general MinRank problem has been proven to be NP-complete by Shallit,
Frandsen and Buss (see [19]). More precisely, they prove that MinRank(r) NP-
complete when r = n − 1 (this corresponds to the problem of finding a linear
combination of M1, . . . ,Mm that is singular). The principle of their proof consists
in writing any set of multivariate equations as an instance of MinRank. It can
be used in the same way to extend their result to the cases r = n− 2, r = n− 3,
. . . and even r = nα (when α > 0 is fixed). However, MinRank is not hard
when r gets smaller, indeed, in 5 we will introduce an expected polynomial time
algorithm to solve the MinRank for any fixed r.

3.3 Strategy of attack

We recall that m = n+u−r. We suppose m ≤ 2n, as an encryption function with
expansion rate > 2 is unacceptable. Moreover, if m > O(n), the cryptosystem is
expected to be broken by Gröbner bases [8].

In each equation yi = xi + gi(x1, . . . , xi−1 ;xn−r+1, . . . , xn) (1 ≤ i ≤ n− r),
the homogeneous part is given by tXAiX, with tX = (x1, . . . , xn), Ai being a
(secret) matrix. Similarly, in each public equation y′i = Pi(x′1, . . . , x

′
n) is given

by tX ′MiX
′, with tX ′ = (x′1, . . . , x

′
n), Mi being a (public) matrix.

The fact that (x1, . . . , xn) = s(x′1, . . . , x
′
n) and (y′1, . . . , y

′
m) = t(y1, . . . , ym)

implies that there exist an invertible n × n matrix S and an invertible m × m
matrix T such that:

t(SX ′)A1(SX ′)
...

t(SX ′)Am(SX ′)

 = T−1


tX ′M1X

′

...
tX ′MmX ′

 .

Let T−1 = (tij)1≤i,j≤m. We thus have, for any X ′:

tX ′(tSAiS)X ′ = tX ′
( m∑

j=1

tijMj

)
X ′

so that:

∀i, 1 ≤ i ≤ m,

m∑
j=1

tijMj = tSAiS.

From the construction of TPM(n, u, r,K), we have Rank(A1) ≤ r. Since S is

an invertible matrix, we have Rank(A1) =Rank(tSA1S) and thus Rank
( m∑

j=1

t1jMj

)
≤

r, that is precisely an instance of MinRank(r).
Suppose we are able to find (at least) one m-tuple (λ1, . . . , λm) such that

Rank
( m∑

j=1

λjMj

)
≤ r. With a good probability, we can suppose that:

m∑
j=1

λjMj = µtSA1S (µ ∈ K∗).



Then we deduce the vector spaces V0 = S−1(Kn−r × {0}r) (corresponding to
xn−r+1 = . . . = xn = 0) and W0 = S−1({0}n−r × Kr) (corresponding to x1 =
. . . = xn−r = 0) by simply noticing that V0 = Im

( ∑m
j=1 λjMjA1

)
and W0 =

Ker
( ∑m

j=1 λjMjA1

)
.

Once we have found V0 and W0, we can easily deduce the vector space V1 =
S−1({0} × Kn−r−1 × {0}r) of dimension 1 (corresponding to x1 = xn−r+1 =
. . . = xn = 0) and W1 = S−1(K × {0}n−r−1 × Kr) (corresponding to x2 =
. . . = xn−r = 0): we just look for coefficients α1, . . . , αn, β1, . . . , βm such that
the following equation:

m∑
j=1

βjy
′
j =

n∑
i=1

αixi + δ,

holds for any element of V0. This can be obtained by simple Gaussian reduction.
We also obtain the g2 quadratic function by Gaussian reduction.

By repeating these steps, we obtain two sequences of vector spaces:

V0 ⊇ V1 ⊇ V2 ⊇ . . . ⊇ Vn−r−1

W0 ⊆ W1 ⊆ W2 ⊆ . . . ⊆ Wn−r−1.

At the end, we have completely determined the secret transformations s and
t, together with the secret functions gi. As a result, this algorithm completely
breaks the TPM family of cryptosystems (we recovered the secret key).

4 Special case attacks on TPM

4.1 The ‘Linearity Attack’ on TTM

In this paragraph, we study the particular case of TTM, as described by T.T.
Moh in [15, 16]. In this case, we show that the MinRank(r) problem is easily
solved, because of the particular structure of the Q8 function used in Φ3.

Description of the Attack
In section 3.3, we proved that an attack can be successfully performed on

TTM this cryptosystem, as soon as we can find out the vector spaces V0 =
S−1({0}2 × K62) (corresponding to x1 = x2 = 0) and W0 = S−1(K2 × {0}62)
(corresponding to x3 = . . . = x64 = 0). At first sight, the equations giving y1

and y2 seem to be quadratic in (x1, . . . , x64). This leads a priori to an instance
of MinRank(2).

However, note that the function x 7→ x2 is linear on K = GF(256), consid-
ered as a vector space of dimension 8 over F = GF(2). Therefore, considering
the equations describing the (secret) Ψ function of TTM1, if we choose a basis
(ω1, . . . , ω8) of K over F and write xi = xi,1ω1+ . . .+xi,8ω8 (1 ≤ i ≤ 64), y1 and
y2 become linear functions of x1,1, x1,2, . . . , x1,8, . . . , x64,1, . . . , x64,8. In terms of

1 See (E) in the appendix, in which t19 is a linear transformation.



MinRank, this means that TTM leads to an instance of MinRank(0) for 8n×8n
matrices (instead of an instance of MinRank(2) for n × n matrices). This leads
to the following attack on TTM:

1. Let x′i = x′i,1ω1+ . . .+x′i,8ω8 (1 ≤ i ≤ 64). Rewrite each public equation y′i =
Pi(x′1, . . . , x

′
64) as y′i = P̃i(x′1,1, . . . , x

′
64,8) (with P̃i a quadratic polynomial

in 64× 8 = 512 variables over F = GF(2)).
2. Find the vector space of the 612-tuples (β1, . . . , β100, α1,1, . . . , α64,8) ∈ K612

satisfying:
100∑
i=1

βiy
′
i =

64∑
i=1

8∑
j=1

αi,jx
′
i,j .

This can be done by Gaussian reduction. We thus obtain the vector spaces
V0 and W0 defined above.

3. The remaining part of the attack is exactly the same as in section 3.3.

Complexity of the Attack
The main part of the algorithm consists in solving a system of linear equa-

tions on 612 variables, by Gaussian reduction. We thus obtain a complexity of
approximately 228 elementary operations to break TTM.

4.2 Solution to the TTM 2.1 Challenge of US Data Security

In 1997, US Data Security published on the internet 3 challenges about TTM (see
[23]). On May 2nd, 2000, we managed to break the second challenge called TTM
2.1. The TTM 2.1 is a public key block cipher with plaintext block size 64 and
ciphertext block size 100. It works on 8 bits finite field GF(256). The public key
have been recovered with approximately 2000 queries to the ”encryption oracle”
available on the internet [23]. As mentioned in 2.4, its size is 214.5 Kbytes.
Moreover it was broken in a simpler way that we described above. By iterative
exploration of it’s linearities, in 3 minutes on a PC we obtained the following
plaintext which can be easily checked to be the exact solution to TTM 2.1. (note
that the quotation marks are part of this plaintext):

"Tao TTP way BCKP of living hui mountain wen river moon love pt"

5 The ‘Kernel Attack’ on MinRank and TPM

In the present section we need the strategy of attack from 3.3 and use it with a
new attack on MinRank(r), which works when qr is small enough.

Description of the Attack (notations are as in 3.3)

1. Choose k random vectors X ′[1], . . . , X ′[k] (with k an integer depending on n
and m, that we define below). Since dim Ker(tSA1S) = n− Rank(tSA1S) ≥
n − r, we have the simultaneous conditions X ′[i] ∈ Ker(tSAiS) (1 ≤ i ≤ k)
with a probability ≥ q−kr.



2. We suppose we have chosen a ”good” set {X ′[1], . . . , X ′[k]} of k vectors (i.e.
such that they all belong to Ker(tSA1S)). Then we can find an m-tuple

(λ1, . . . , λm) such that, for all i, 1 ≤ i ≤ k,
( m∑

j=1

λjMj

)
(X ′[i]) = 0. They

are solution of a system of kn linear equations in m indeterminates. As
a result, if we let k = dm

n e, the solution is essentially unique and can be
easily found by Gaussian reduction. We thus obtain the two vector spaces
V0 = S−1(Kn−r × {0}r) (corresponding to xn−r+1 = . . . = xn = 0) and
W0 = S−1({0}n−r ×Kr) (corresponding to x1 = . . . = xn−r = 0).

3. The remaining part of the attack is exactly the same as in section 3.3.

Complexity of the Attack
The complexity of the attack is easily computed: O(qd

m
n er ·m3).

Application to TTM
In the particular case of TTM, we have q = 256, n = 64, m = 100 and r = 2.

We thus obtain an attack on TTM with complexity O(252).

Note: Compared to the 228 of section 4.1, this attack is slower, but it does
not make use of any linearity of y1 and y2, so that it can also be used to break
possible generalizations of TTM, with more general ”Q8 components” (see [4] for
examples of Q8 which provide non linear expressions for y1 and y2 over GF(2)).

6 The ‘Degeneracy Attack’ on TPM signature schemes

We describe here a general attack on TMP signature schemes (recall that such
schemes are possible only for u ≤ r), when qu is not too large. From the descrip-
tion of the attack, its complexity is easily seen to be O(qu ·n6). We use the same
notations as in section 3.3. In particular, m = n + u− r.

1. We choose a random m-tuple (β1, . . . , βm) ∈ Km. With a probability q−u−1,
we can suppose that βiPi is a degenerate quadratic polynomial (i.e. a quadratic
polynomial which can be rewritten with fewer variables after a linear change
of variables). The fact that a quadratic polynomial is degenerate can easily
be detected: for instance by using its canonical form (see [18] for some other
methods).

2. Suppose we have found a ”good” m-tuple (β1, . . . , βm). Considering the new

set of (< n) variables for the quadratic form
m∑

i=1

βiPi, we deduce easily the

vector space Wn−r = S−1(Kn−r−1 × {0} ×Kr).
3. Then we look for a n-tuple (α1, . . . , αn) ∈ Kn and a quadratic function gn−r,

such that:
m∑

i=1

βiy
′
i =

n∑
i=1

αix
′
i + gn−r(x′1, . . . , x

′
n)



is true for any (x′1, . . . , x
′
n) ∈ Wn−r. This can be done by Gaussian reduction.

We thus obtain the vector space Vn−r = S−1({0}n−r−1×K ×{0}r) and the
quadratic polynomial gn−r.

4. The same principle can be repeated n−r times, so as to obtain two sequences
of vector spaces:

Vn−r ⊆ Vn−r−1 ⊆ . . . ⊆ V0

Wn−r ⊇ Wn−r−1 ⊇ . . . ⊇ W0.

At the end, as in the attack described in section 3.3, we have completely
determined the secret transformations s and t, together with the secret func-
tions gi. As a result, this algorithm completely breaks the TPM family in
signature mode (we recovered the secret key).

7 Conclusion

We cryptanalysed a large class of cryptosystems TPM, that includes TTM as
described by T.T. Moh [16]. They can be broken in polynomial time, as long as
r is fixed. The proposed TTM cryptosystem [16] can be broken in 228 due to
linearities. Thus we could easily break the ”TTM 2.1” challenge proposed by US
Data Security in October 1997. Even if Q8 was nonlinear, and since r = 2, it is
still broken in 252 elementary operations for a 512-bit cryptosystem.

We also showed that signature schemes using TPM are insecure. There is
very little hope that a secure triangular system will ever be proposed.
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Appendix: Actual Parameters for the TTM Cryptosystem

Let Q8 be the function defined by

Q8(q1, . . . , q30) = q8
1 + q4

29 + q2
30 + [q4

2 + q2
3q2

8 + q2
4q2

5 + q2
6q2

12 + q2
7q2

13]

×[q4
9+(q2

10+q14q15+q18q19+q20q21+q22q24)(q2
11+q16q17+q23q28+q25q26+q13q27)].



However we obtain Q8(q1, . . . , q30) = t219 as soon as we substitute the q1..30 with:

q1 = t1 + t2t6 q2 = t22 + t3t7 q3 = t23 + t4t10 q4 = t3t5
q5 = t3t11 q6 = t4t7 q7 = t4t5 q8 = t27 + t5t11

q9 = t26 + t8t9 q10 = t28 + t12t13 q11 = t29 + t14t15 q12 = t7t10
q13 = t10t11 q14 = t212 + t7t8 q15 = t213 + t11t16 q16 = t214 + t10t12

q17 = t215 + t11t17 q18 = t12t16 q19 = t11t12 q20 = t8t13
q21 = t7t13 q22 = t8t16 q23 = t14t17 q24 = t7t11
q25 = t12t15 q26 = t10t15 q27 = t12t17 q28 = t11t14

q29 = t18 + t21 q30 = t19 + t218

We put n = 64, v = 36, and we consider the ti = ti(u1, . . . , u19) (1 ≤ i ≤ 19)
as randomly chosen linear forms (i.e. homogeneous polynomials of degree one in
u1, . . . , u19), satisfying the following conditions:

– t1(u1, . . . , u19) = u1 ;
– t18(u1, . . . , u19) = u18 ;
– t19(u1, . . . , u19) = u19 ;
– t6(u1, . . . , u19), t7(u1, . . . , u19), t18(u1, . . . , u19) and t19(u1, . . . , u19) depend

only on the variables u6, u7, . . . , u17,

We thus obtain polynomials qi = qi(u1, . . . , u19) (1 ≤ i ≤ 30) of degree two in
u1, . . . , u19. Finally, we choose:

P (z65, . . . , z100) = Q8(z93, . . . , z100, z73, . . . , z92, z63, z64)
Q(z65, . . . , z100) = Q8(z65, . . . , z92, z61, z62)
f61(x1, . . . , x60) = q29(x9, x11, . . . , x16, x51, . . . , x62)− x61

f62(x1, . . . , x61) = q30(x9, x11, . . . , x16, x51, . . . , x62)− x62

f63(x1, . . . , x62) = q29(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)− x63

f64(x1, . . . , x63) = q30(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)− x64

f65(x1, . . . , x64) = q1(x9, x11, . . . , x16, x51, . . . , x62)
...

f92(x1, . . . , x91) = q28(x9, x11, . . . , x16, x51, . . . , x62)
f93(x1, . . . , x92) = q1(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)

...
f100(x1, . . . , x99) = q8(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)

and randomly chosen quadratic forms for fi (2 ≤ i ≤ 60).
Let us denote θ : K64 → K100 the function defined by

θ(x1, . . . , x64) = (x1, . . . , x64, 0, . . . , 0).



Hence (x1, . . . , x64) 7→ (y1, . . . , y100) = Φ3 ◦ Φ2 ◦ θ(x1, . . . , x64) is given by the
following system:

(E)



y1 = x1 + [t19(x9, x11, . . . , x16, x51, . . . , x62)]2 (= x1 + x2
62)

y2 = x2 + f2(x1) + [t19(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)]2

(= x2 + f2(x1) + x2
64)

y3 = x3 + f3(x1, x2)
...

y60 = x60 + f60(x1, . . . , x59)
y61 = q29(x9, x11, . . . , x16, x51, . . . , x62) (= x61 + x2

9)
y62 = q30(x9, x11, . . . , x16, x51, . . . , x62) (= x62 + x2

61)
y63 = q29(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64) (= x63 + x2

10)
y64 = q30(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64) (= x64 + x2

63)
y65 = q1(x9, x11, . . . , x16, x51, . . . , x62)

...
y92 = q28(x9, x11, . . . , x16, x51, . . . , x62)
y93 = q1(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)

...
y100 = q8(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)

The Public Key

The user selects a random invertible affine transformation Φ1 : K64 → K64,
and a random invertible affine transformation Φ4 : K100 → K100, such that the
function F = Φ4 ◦ Φ3 ◦ Φ2 ◦ θ ◦ Φ1 satisfies

F (0, . . . , 0) = (0, . . . , 0).

By construction of F , if we denote (y′1, . . . , y
′
100) = F (x′1, . . . , x

′
64), then we

have an explicit set {P1, . . . , P100} of 100 quadratic polynomials in 64 variables,
such that: 

y′1 = P1(x′1, . . . , x
′
64)

...
y′100 = P100(x′1, . . . , x

′
64)

This set of 100 polynomials constitutes the public key of the TTM cryptosystem.

Encrypting a message

Given a plaintext (x′1, . . . , x
′
64) ∈ K64, the sender computes y′i = Pi(x′1, . . . , x

′
64)

for 1 ≤ i ≤ 100 (thanks to the public key) and sends the ciphertext (y′1, . . . , y
′
100).



Decrypting a message

Given a ciphertext (y′1, . . . , y
′
100) ∈ K100, the legitimate receiver recovers the

plaintext by:

(x′1, . . . , x
′
64) = Φ1

−1 ◦ π ◦ Φ2
−1 ◦ Φ3

−1 ◦ Φ3
−1 ◦ Φ4

−1(y′1, . . . , y
′
100)

with π : K100 7→ K64 defined by π(x1, . . . , x100) = (x1, . . . , x64) and thus satisfies
π ◦ θ = Id.


