
An Introduction to Socket Programming
(by) Reg Quinton <reggers@julian.uwo.ca>
© $Id: socket.html,v 1.8 1997/05/02 20:17:16 reggers Exp $

Contents:

Introduction
BEWARE

Existing Services
Netstat Observations

Host names and IP numbers
Programming Calls

Services and Ports
Programming Calls

Socket Addressing
File Descriptors and Sockets

File Descriptors
Sockets

Client Connect
Client Communication
Stdio Buffers

Server Applications
Server Bind
Listen and Accept

Inetd Services
Inetd Comments
Whois Daemon

Running the Daemon
The Code
Connecting to the Server
Whois Client
Perl Socket Programming

Final Comments
Note Well

Suggested Reading
Author

Introduction:

These course notes are directed at Unix application programmers who want to develop client/server
applications in the TCP/IP domain (with some hints for those who want to write UDP/IP
applications). Since the Berkeley socket interface has become something of a standard these notes will
apply to programmers on other platforms.

Fundamental concepts are covered including network addressing, well known services, sockets and
ports. Sample applications are examined with a view to developing similar applications that serve
other contexts. Our goals are

to develop a function, tcpopen(server,service), to connect to service.

1 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

to develop a server that we can connect to.

This course requires an understanding of the C programming language and an appreciation of the
programming environment (ie. compilers, loaders, libraries, Makefiles and the RCS revision control
system). If you want to know about socket programming with perl(1) then see below but you should
read everything first.

Our example is the UWO/ITS whois(1) service -- client and server sources available in:

Network Services: http://www.uwo.ca/its/ftp/pub/unix/network

Look for the whois(1) client and the whoisd(8) server. You'll find extensive documentation on the
UWO/ITS Whois/CSO server -- that's the whoisd(8) server. It also includes some Perl clients which
access the server to provide a gateway service (for the Finding People Web page and for CSO/PH
clients). The Unix whois(1) client will be pretty obvious after you've read these notes.

BEWARE:

If C code scares you, then you'll get some concepts but you might be in the wrong course.
You need to be a programmer to write programs (of course). This isn't an Introduction to C
(or Perl)!

Existing Services:

Before starting, let's look at existing services. On a Unix machine there are usually lots of TCP/IP and
UDP/IP services installed and running:

[1:17pm julian] netstat -a
Active Internet connections (including servers)
Proto R-Q S-Q Local Address Foreign Address (state)
tcp 0 0 julian.2717 vnet.ibm.com.smtp ESTABLISHED
tcp 0 0 julian.smtp uacsc2.alban.55049 TIME_WAIT
tcp 0 13 julian.nntp watserv1.wat.3507 ESTABLISHED
tcp 0 0 julian.nntp gleep.csd.uw.3413 ESTABLISHED
tcp 0 0 julian.telnet uwonet-serve.55316 ESTABLISHED
tcp 0 0 julian.login no8sun.csd.u.1023 ESTABLISHED
tcp 0 0 julian.2634 Xstn15.gaul..6000 ESTABLISHED
 etc...
tcp 0 0 *.printer *.* LISTEN
tcp 0 0 *.smtp *.* LISTEN
tcp 0 0 *.waisj *.* LISTEN
tcp 0 0 *.account *.* LISTEN
tcp 0 0 *.whois *.* LISTEN
tcp 0 0 *.nntp *.* LISTEN
 etc...
udp 0 0 *.ntp *.*
udp 0 0 *.syslog *.*
udp 0 0 *.xdmcp *.*

Netstat Observations:

Inter Process Communication (or IPC) is between host.port pairs (or host.service if you like). A
process pair uses the connection -- there are client and server applications on each end of the IPC
connection.

Note the two protocols on IP -- TCP (Transmission Control Protocol) and UDP (User Datagram

2 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

Prototocol). There's a third protocl ICMP (Internet Control Message Protocol) which we'll not look
at -- it's what makes IP work in the first place!

We'll be looking in more detail at TCP services and will not look at UDP -- but see a sample Access
Control List client/server pair which uses UDP services, you'll find that in:

Access Control Lists: http://www.uwo.ca/its/ftp/pub/unix/security/acl

TCP services are connection orientated (like a stream, a pipe or a tty like connection) while UDP
services are connectionless (more like telegrams or letters).

We recognize many of the services -- SMTP (Simple Mail Transfer Protocol as used for E-mail),
NNTP (Network News Transfer Protocol service as used by Usenet News), NTP (Network Time
Protocol as used by xntpd(8)), and SYSLOG is the BSD service implemented by syslogd(1M).

The netstat(1M) display shows many TCP services as ESTABLISHED (there is a connection between
client.port and server.port) and others in a LISTEN state (a server application is listening at a port
for client connections). You'll often see connections in a CLOSE_WAITE state -- they're waiting for
the socket to be torn down.

Host names and IP numbers:

Hosts have names (eg. julian.uwo.ca) but IP addressing is by number (eg. [129.100.2.12]). In the old
days name/number translations were tabled in /etc/hosts.

[2:38pm julian] page /etc/hosts
/etc/hosts: constructed out of private data and DNS. Some machines
need to know some things at boot time. Otherwise, rely on DNS.
#
127.0.0.1 localhost
129.100.2.12 julian.uwo.ca
129.100.2.26 backus.ccs.uwo.ca loghost.its.uwo.ca
129.100.2.33 filehost.ccs.uwo.ca
129.100.2.14 panther.uwo.ca
 etc...

These days name to number translations are implemented by the Domain Name Service (or DNS) --
see named(8). and resolv.conf(4).

[2:43pm julian] page /etc/resolv.conf
$Author: reggers $
$Date: 1997/05/02 20:17:16 $
$Id: socket.html,v 1.8 1997/05/02 20:17:16 reggers Exp $
$Source: /usr/src/usr.local/doc/courses/socket/RCS/socket.html,v $
$Locker: $
#
The default /etc/resolv.conf for the ITS solaris systems.
#
nameserver 129.100.2.12
nameserver 129.100.2.51
nameserver 129.100.10.252
domain its.uwo.ca
search ncsm.its.uwo.ca its.uwo.ca uwo.ca

Programming Calls:

Programmers don't scan /etc/hosts nor do they communicate with the DNS. The C library routines

3 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

gethostbyname(3) (and gethostbyaddr(3) on the same page) each return a pointer to an object with
the following structure:

struct hostent {
 char *h_name; /* official name */
 char **h_aliases; /* alias list */
 int h_addrtype; /* address type */
 int h_length; /* address length */
 char **h_addr_list; /* address list */
};
#define h_addr h_addr_list[0]
 /* backward compatibility */

The structure h_addr_list is a list of IP numbers (recall that a machine might have several
interfaces, each will have a number).

Good programmers would try to connect to each address listed in turn (eg. some versions of ftp(1) do
that). Lazy programmers (like me) just use h_addr -- the first address listed. But see the acl(1) and
acld(8) example noted earlier -- the client will try each server until it gets an answer or runs out of
servers to ask.

Client applications connect to a host.port (cf. netstat output) for a service provided by the application
found at that address.

Proto R-Q S-Q Local Address Foreign Address (state)
tcp 0 0 julian.2717 vnet.ibm.com.smtp ESTABLISHED
tcp 0 13 julian.nntp watserv1.wat.3507 ESTABLISHED

The connection is usually prefaced by translating a host name into an IP number (but if you knew the
IP number you could carefully skip that step).

int tcpopen(host,service)
char *service, *host;
{
 struct hostent *hp;
 etc...
 if ((hp=gethostbyname(host)) == NULL) then error...

I say "carefully" because the IP address is a structure of 4 octets. Watch out for byte ordering. An
unsigned long isn't the same octet sequence on all machines. See byteorder(3N) for host to net
conversions (host format to/from network format).

Services and Ports:

Services have names (eg. SMTP the Simple Mail Transfer Protocol). Ports have numbers (eg. SMTP
is a service on port 25). The mapping from service names to port numbers is listed in /etc/services.

[1:22pm julian] page /etc/services
$Author: reggers $
$Date: 1997/05/02 20:17:16 $
#
Network services, Internet style
 etc...
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail

4 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

whois 43/tcp nicname
domain 53/tcp nameserver
domain 53/udp nameserver
tftp 69/udp
finger 79/tcp
nntp 119/tcp readnews untp
ntp 123/udp
snmp 161/udp
xdmcp 177/udp xdm
 etc...

Programming Calls:

But programmers don't scan /etc/services, they use library routines. The C library routines
getservbyname(3N) (and getservbyport(3N) on the same page) each return a pointer to an object with
the following structure containing the broken-out fields of a line in /etc/services.

struct servent {
 char *s_name; /* name of service */
 char **s_aliases; /* alias list */
 int s_port; /* port for service */
 char *s_proto; /* protocol to use */
};

Client applications connect to a service port. Usually this is prefaced by translating a service name
(eg. SMTP) into the port number (but if you knew the port number you could carefully skip that
step).

int tcpopen(host,service)
char *service, *host;
{
 struct servent *sp;
 etc...
 if ((sp=getservbyname(service,"tcp")) == NULL) then error...

Ie. to determine the port number for a particular tcp service. Note that you'd do the same to
determine port numbers for UDP services.

Socket Addressing:

A Socket Address is a host.port pair (communication is between host.port pairs -- one on the server,
the other on the client). We know how to determine host numbers and service numbers so we're well
on our way to filling out a structure were we specify those numbers. The structure is sockaddr_in,
which has the address family is AF_INET as in this fragment:

int tcpopen(host,service)
char *service, *host;
{ int unit;
 struct sockaddr_in sin;
 struct servent *sp;
 struct hostent *hp;
 etc...
 if ((sp=getservbyname(service,"tcp")) == NULL) then error...
 if ((hp=gethostbyname(host)) == NULL) then error...

 bzero((char *)&sin, sizeof(sin));
 sin.sin_family=AF_INET;
 bcopy(hp->h_addr,(char *)&sin.sin_addr, hp->h_length);

5 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

 sin.sin_port=sp->s_port;
 etc...

The code fragment is filling in the IP address type AF_INET, port number and IP address in the Socket
Address structure -- the address of the remote host.port where we want to connect to find a service.

There's a generic Socket Address structure, a sockaddr, used for communication in arbitrary
domains. It has an address family field and an address (or data) field:

/* from: /usr/include/sys/socket.h */
struct sockaddr {
 u_short sa_family; /* address family */
 char sa_data[14]; /* max 14 byte addr */
};

The sockaddr_in structure is for Internet Socket Addresses (address family AF_INET). An instance
of the generic socket address.

/* from: /usr/include/netinet/in.h */
struct sockaddr_in {
 short sin_family; /* AF_INET */
 u_short sin_port; /* service port */
 struct in_addr sin_addr; /* host number */
 char sin_zero[8]; /* not used */
};

The family defines the interpretation of the data. In other domains addressing will be different --
services in the UNIX domain are names (eg. /dev/printer). In the sockaddr_in structure we've got
fields to specify a port and a host IP number (and 8 octets that aren't used at all!). That structure
specifies one end of an IPC connection. Creating that structure and filling in the right numbers has
been pretty easy so far.

File Descriptors and Sockets:

File Descriptors:

File Descriptors are the fundamental I/O object. You read(2) and write(2) to file descriptors.

 int cc, fd, nbytes;
 char *buf;

 cc = read(fd, buf, nbytes);
 cc = write(fd, buf, nbytes)

The read attempts to read nbytes of data from the object referenced by the file descriptor fd into the
buffer pointed to by buf. The write does a write to the file descriptor from the buffer. Unix I/O is a
byte stream.

File descriptors are numbers used for I/O. Usually the result of open(2) and creat(2) calls.

All Unix applications run with stdin as file descriptor 0, stdout as file descriptor 1, and stderr as
file descriptior 3. But stdin is a FILE (see stdio(3S)) not a file descriptor. If you want a stdio FILE
on a file descriptor use fdopen(3S).

Sockets:

6 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

A Socket is a Unix file descriptor created by the socket(3N) call -- you don't open(2) or creat(2) a
socket. By way of comparison pipe(2) creates file descriptors too -- you might be familiar with pipes
which predate sockets in the development of the Unix system.

 int s, domain, type, protocol;
 s = socket(domain, type, protocol);
 etc...
 cc = read(s, buf, nbytes);

The domain parameter specifies a communications domain (or address family). For IP use AF_INET
but note that socket.h lists all sorts of address families. This is to inform the system how an address
should be understood -- on different networks, like AF_DECnet, addressing may be longer than the
four octets of an IP number. We're only concerned with IP and the AF_INET address family.

The type parameter specifies the semantics of communication (sometimes know as a specification of
quality of services). For TCP/IP use SOCK_STREAM (for UDP/IP use SOCK_DGRAM). Note that any
address family might support those service types. See socket.h for a list of service types that might
be supported.

A SOCK_STREAM is a sequenced, reliable, two-way connection based byte stream. If a data cannot be
successfully transmitted within a reasonable length of time the connection is considered broken and
I/O calls will indicate an error.

The protocol specifies a particular protocol to be used with the socket -- for TCP/IP use 0. Actually
there's another programmers interface getprotobyname(3N) that provides translates protocol names to
numbers. It's an interface to the data found in /etc/protocols -- compare with the translation of service
names to port numbers discussed above.

Client Connect:

A client application creates a socket(3N)and then issues a connect(3N) to a service specified in a
sockaddr_in structure:

int tcpopen(host,service)
char *service, *host;
{ int unit;
 struct sockaddr_in sin;
 struct servent *sp;
 struct hostent *hp;

 if ((sp=getservbyname(service,"tcp")) == NULL) then error...
 if ((hp=gethostbyname(host)) == NULL) then Ierror...
 bzero((char *)&sin, sizeof(sin))
 etc...
 if ((unit=socket(AF_INET,SOCK_STREAM,0)) < 0) then error...
 if (connect(unit,&sin,sizeof(sin)) < 0) then error...
 return(unit);
}

The result returned is a file descriptor which is connected to a server process. A communications
channel on which one can conduct an application specific protocol.

Client Communication:

7 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

Having connected a socket to a server to establish a file descriptor communication is with the usual
Unix I/O calls. You have Inter Process Communication (or IPC) to a server.

Many programmers turn file descriptors into stdio(3S) streams so they can use fputs, fgets, fprintf,
etc. -- use fdopen(3S).

main(argc,argv)
int argc;
char *argv[];
{
 int unit,i;
 char buf[BUFSIZ];
 FILE *sockin,*sockout;

 if ((unit=tcpopen(WHOHOST,WHOPORT))
 < 0) then error...
 sockin=fdopen(unit,"r");
 sockout=fdopen(unit,"w");
 etc...
 fprintf(sockout,"%s\n",argv[i]);
 etc...
 while (fgets(buf,BUFSIZ,sockin)) etc...

Stdio Buffers:

Stdio streams have powerful manipulation tools (eg. fscanf is amazing). But beware, streams are
buffered! This means a well placed fflush(3S) is often required to flush a buffer to the peer.

 fprintf(sockout,"%s\n",argv[i]);
 fflush(sockout);

 while (fgets(buf,BUFSIZ,sockin)) etc...

Many client/server protocols are client driven -- the client sends a command and expects an answer.
The server won't see the command if the client doesn't flush the output. Likewise, the client won't see
the answer if the server doesn't flush it's output.

Watch out for client and server blocking -- both waiting for input from the other.

Server Applications:

A system offers a service by having an application running that is listening at the service port and
willing to accept a connection from a client. If there is no application listening at the service port then
the machine doesn't offer that service.

The SMTP service is provided by an application listening on port 25. On Unix systems this is usually
the sendmail(1M) application which is started at boot time.

[2:20pm julian] ps -agx | grep sendmail
 419 ? SW 0:03 /usr/lib/sendmail -bd -q15m
18438 ? IW 0:01 /usr/lib/sendmail -bd -q15m

[2:28pm julian] netstat -a | grep smtp
tcp 0 0 julian.3155 acad3.alask.smtp SYN_SENT
tcp 0 0 *.smtp *.* LISTEN

8 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

In the example we have a process listening to the smtp port (for inbound mail) and another process
talking to the smtp port on acad3.alaska.edu (ie. sending mail to that system).

So how do we get a process bound behind a port?

Server Bind:

A Server uses bind(3N) to establish the local host.port assignment -- ie. so it is the process behind
that port. That's really only required for servers -- applications which accept(3N) connections to
provide a service.

 struct servent *sp;
 struct sockaddr_in sin;

 if ((sp=getservbyname(service,"tcp")) == NULL) then error...

 sin.sin_family=AF_INET;
 sin.sin_port=sp->s_port;
 sin.sin_addr.s_addr=htonl(INADDR_ANY);

 if ((s=socket(AF_INET,SOCK_STREAM,0)) < 0) then error...
 if (bind(s, &sin, sizeof(sin)) < 0) then error...

htonl(3N) converts a long to the right sequence (given different byte ordering on different machines).
The IP address INADDR_ANY means all interfaces. You could, if you wanted, provide a service only on
some interfaces -- eg. if you only provided the service on the loopback interface (127.0.0.1) then the
service would only be available to clients on the same system.

What this code fragment does is specify a local interface and port (into the sin structure). The
process is bound to that port -- it's now the process behind the local port.

Client applications usually aren't concerned about the local host.port assignment (the connect(3N)
does a bind o some random but unused local port on the right interface). But rcp(1) and related
programs (like rlogin(1) and rsh(1)) do connect from reserved port numbers.

I've done the same in some of my programming. See, for example, the version of tcpopen.c used in
our Passwdd/Passwd -- An authentication Daemon/Client. There's an instance where a client
application connects from a reserved port.

Listen and Accept:

To accept connections, a socket is created with socket(3N), it's bound to a service port with
bind(3N), a queue for incoming connections is specified with listen(3N) and then the connections are
accepted with accept(3N) as in this fragment:

 struct servent *sp;
 struct sockaddr_in sin,from;

 if ((sp=getservbyname(service,"tcp")) == NULL) then error...
 sin.sin_family=etc...
 if ((s=socket(AF_INET,SOCK_STREAM,0)) < 0) then error...
 if (bind(s, &sin, sizeof(sin)) < 0) then error...
 if (listen(s,QUELEN) < 0) then error...
 for (;;) {
 if ((g=accept(f,&from,&len)) < 0) then error...
 if (!fork()) {
 child handles request...
 ...and exits

9 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

 exit(0);
 }
 close(g); /* parent releases file */
 }

This is the programming schema used by utilities like sendmail(1M) and others -- they create their
socket and listen for connections. When connections are made, the process forks off a child to handle
that service request and the parent process continues to listen for and accept further service requests.

But, you really don't want to use that programming paradigm unless you really have to. There are
lots of hidden issues (like becoming a detached process and more) that you'd rather avoid.

Fortunately, there's an easier method.

Inetd Services:

Not all services are started at boot time by running a server application. Eg. you won't usually see a
process running for the finger service like you do for the smtp service. Many are handled by the
InterNet Daemon inetd(1M). This is a generic service configured by the file inetd.conf(4).

[2:35pm julian] page /etc/inetd.conf
$Author: reggers $
$Date: 1997/05/02 20:17:16 $
#
Internet server configuration database
ftp stream tcp nowait root /usr/etc/ftpd ftpd
telnet stream tcp nowait root /usr/etc/telnetd telnetd
shell stream tcp nowait root /usr/etc/rshd rshd
login stream tcp nowait root /usr/etc/rlogind rlogind
exec stream tcp nowait root /usr/etc/rexecd rexecd
uucpd stream tcp nowait root /usr/etc/uucpd uucpd
finger stream tcp nowait nobody /usr/etc/fingerd fingerd
 etc...
whois stream tcp nowait nobody /usr/lib/whois/whoisd whoisd
 etc...

Inetd Comments:

For each service listed in /etc/inetd.conf the inetd(1M) process, and that is a process is started at boot
time, executes the socket(3N), bind(3N), listen(3N) and accept(3N) calls as discussed above. Inetd
also handles many of the daemon issues (signal handling, set process group and controlling tty) which
we've studiously avoided.

The inetd(1M) process spawns the appropriate server application (with fork(2) and exec(2)) when a
client connects to the service port. The daemon continues to listen for further connections to the
service while the spawned child process handles the request which just came in.

The server application (ie. the child spawned by inetd(1M)) is started with stdin and stdout
connected to the remote host.port of the client process which made the connection. Any input/output
by the server appliation on stdin/stdout are sent/received by the client application. You have Inter
Process Communication (or IPC)!

This means, any application written to use stdin/stdout can be a server application. Writing a
server application should therefore be fairly simple.

10 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

Whois Daemon:

On julian we have an entry in /etc/inetd.conf for the UWO/ITS whois service:

[3:25pm julian] grep whois /etc/inetd.conf
whois stream tcp nowait nobody /usr/lib/whois/whoisd whoisd

This is our local directory service -- it's implemented on a TCP/IP stream (all whois services are), at
the whois port (all whois services should be at that port), it's ran as user nobody (you don't need to
run servers as user root), the program to run is /usr/lib/whois/whoisd, and the command line to
the program is just whoisd.

This is a standard whois service -- it implements the trivial protocol required of all whois servers.
Any whois client can use the service. The program conducts an application protocol on
stdin/stdout (which is usually connected by a TCP/IP socket to a client application). The protocol
is trivial -- server accepts a one line query, answers back and exits.

Running the Daemon:

You can run the whois daemon (on the server) to see what it does:

[3:27pm julian] echo reggers | /usr/lib/whois/whoisd
There were 1 matches on your request.

 Full Name: Quinton, Reg
 Department: Info Tech Svcs
 Room: NSC 214
 Phone: 679-2111x(6026)
 Index Key: 481800
 Machine Address: reggers@julian.uwo.ca
 Directory Addresses: reg.quinton@uwo.ca
 : r.quinton@uwo.ca
 : reggers@uwo.ca
 : quinton@uwo.ca

For more information try 'whois help'.

The program is command driven -- you give a command (or query string) on stdin, it produces
results on stdout, and exits. This is a very simple protocol, compare with fingerd(1M).

Actually the example is a misrepresentation -- our server will only answer questions if it's input is a
socket in the AF_INET. That's because we want to syslog(3) all transactions -- we want to know
where the connection came from.

The Code:

The server program is easy enough -- read a line, switch on command, and exit.

fgets(string,BUFSIZ,stdin); read from socket...

/* for some reason people send the whois phrase */

again:
 strcpy(verb,""); strcpy(args,"");
 sscanf(buf,"%[^ \t\r\n]%*c%[^\r\n]",verb,args);
 if (!strcasecmp(verb,"whois")) {

11 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

 strcpy(buf,args);
 goto again;
 }
 sscanf(buf,"%[^\r\n]",buf);

/* switch on command verbs */
if (!strcasecmp(verb,"help"))
 givehelp(args); output sent to stdout...
else etc...

/* or just display a person */
else listdisplay(lookbyname(buf));
 output sent to stdout...

fflush(stdout); push output to client ...

Server programs can be that simple.

Connecting to the Server:

You can make a telnet(1) connection to the whois service on the server.

[3:47pm julian] telnet julian whois
Trying 129.100.2.12 ... Connected to julian.uwo.ca.
Escape character is '^]'.
reggers my command input
There were 1 matches on your request.

 Full Name: Quinton, Reg
 Department: Info Tech Svcs
 Room: NSC 214
 Phone: 679-2111x(6026)
 Index Key: 481800
 Machine Address: reggers@julian.uwo.ca
 Directory Addresses: reg.quinton@uwo.ca
 : r.quinton@uwo.ca
 : reggers@uwo.ca
 : quinton@uwo.ca

For more information try 'whois help'.
Connection closed by foreign host.

But we wouldn't normally use telnet as the client application (although in this case we could).

Whois Client:

The whois(1) client makes a TCP/IP connection to the server (using the tcpopen function we've
developed here) and conducts the kind of protocol that you would type if you where to make a
connection by hand:

[7:30am julian] whois reggers
There were 1 matches on your request.

 Full Name: Quinton, Reg
 Department: Info Tech Svcs
 Room: NSC 214
 Phone: 679-2111x(6026)
 Index Key: 481800
 Machine Address: reggers@julian.uwo.ca
 Directory Addresses: reg.quinton@uwo.ca
 : r.quinton@uwo.ca
 : reggers@uwo.ca
 : quinton@uwo.ca

12 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

For more information try 'whois help'.

The client sends the command "reggers", the server sends back the answer and the client displays the
answer received to the user. When the server is finished the connection is closed.

If you understand the development of the tcpopen function then the rest of the code for that client
should not be too difficult. See the entire distribution for that application -- there's only one main
program to complete the kit.

Perl Socket Programming:

These days it's not unusal to see socket programming in perl(1) as well as C programs. Assuming you
have been able to follow the notions presented above in the development of a tcpopen function
written in C as used by our whois(1) client the following is for the Perl enthusiast:

sub tcpopen {
 use Socket; # need socket interface
 my($server, $service) = @_; # args to this function
 my($proto, $port, $iaddr); # local variables
 my($handle)="$server\:\:$service"; # localized obscure handle

 die("550:Cannot getprotobyname('tcp')\r\n")
 unless ($proto = getprotobyname('tcp'));

 die("550:Cannot getservbyname($service)\r\n")
 unless ($port = getservbyname($service, 'tcp'));

 die("550:Cannot gethostbyname($server)\r\n")
 unless ($iaddr = gethostbyname($server));

 die("550:Cannot create socket\r\n")
 unless socket($handle, PF_INET, SOCK_STREAM, $proto);

 die("550:Cannot connect($service://$server)\r\n")
 unless connect($handle, sockaddr_in($port, $iaddr));

 # unbuffered I/O to that service

 select($handle); $| = 1; select(STDOUT); $| = 1;

 return($handle);
}

See whois2ph(8), the whois2ph source, whois2html(8), and the whois2html source -- both are
production gateways in Perl to interface with our whoisd(8) server.

Final Comments:

The whois example uses a line based protocol. The strategy is common but by no means universal.
For example, the lpd protocols use octets (ie. single characters) for the commands.

Inetd servers are the simplest to implement. However, this may not be optimal. Especially if the server
has to do a lot of work first (eg. loading in a big data base).

Stand alone servers have to deal with many daemon issues -they should ignore most signals, set a
unique process group and get rid of the controlling terminal.

Daemons like nntp could (in theory) handle many clients from a single daemon using interrupt driven

13 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

I/O. As currently implemented most have an nntp daemon for each client (but INN uses a single
daemon for flooding).

You'll note that Socket programmers use alarm(2), setjmp(2), and signal(2) calls. The intent is to
prevent a process (client or server) from hanging in a wait for I/O state by setting and trapping on an
alarm.

Note Well:

The best way to code a client/server program is to reuse code from an existing service. There's
lots of public domain examples to work from -- nntp, lpd, sendmail, and even our whois service.
A simple solution that works is much better than a fancy solution that doesn't -- keep it simple.
Presentation issues, ie. the display for the user, should not effect the protocol or server. Again,
protocols have to be simple!
Don't ever assume the client or server applications are well behaved!

Suggested Reading:

It shoud be clear that we have lots of real world examples you can look at and work from:

UWO/ITS Whois/CSO server, by Reg Quinton, UWO/ITS, 1992-97
UWO/ITS Whois client, by Reg Quinton, UWO/ITS, 1992-97
Passwdd/Passwd -- An authentication Daemon/Client, by Reg Quinton, UWO/ITS, 1992-97
ACL -- Access Control Lists, by Reg Quinton, UWO/ITS, 1995-97

More detailed documentation, should you need it, can be found at:

Introductory 4.3BSD Interprocess Communication, by Stuart Sechrest, (in) UNIX Programmer's
Supplementary Documents, Vol1, 4.3 Berkeley Software Distribution, PS1:7.
Advanced 4.3BSD Interprocess Communication, by Samuel J. Leffler et al, (in) UNIX
Programmer's Supplementary Documents, Vol1, 4.3 Berkeley Software Distribution, PS1:8.
Introduction to the Internet Protocols, Computer Science Facilities Group, Rutgers. (See
ftp:/ftp.uwo.ca/nic)
Networking with BSD-style Sockets, by John Romkey, (in) Unix World, July-Aug. 1989.
How to Write Unix Daemons, by Dave Lennert, (in) Unix World, Dec. 1988.
A Socket-Based Interprocess Communications Tutorial, Chpt. 10 of SunOS Network
Programming Guide.
An Advanced Socket-Based Interprocess Communications Tutorial, Chpt. 11 of SunOS
Network Programming Guide.

Author:

Comments, concerns, questions, etc. about these notes should be directed to the author:

Reg Quinton <reggers@julian.uwo.ca>
(for) The UWO Network Information Centre
Information Technology Services
The University of Western Ontario
London, Ontario N6A 5B7 Canada

14 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

+1 519 661-2151x6026

Copyright 1991-97:

These notes are the property of the author, the Division of Information Technology Services (ITS),
and the University of Western Ontario (UWO), London, Ontario Canada. Permission is granted to
freely copy and distribute provided that No charge is applied and due credit is given to the author,
ITS and UWO.

© $Id: socket.html,v 1.8 1997/05/02 20:17:16 reggers Exp $

15 of 15 12.03.99 01:22

An Introduction to Socket Programming file:///C|/Eigene Dateien/Manualz/not ad...duction to Socket Programming/socket.htm

